1
|
Hersby DS, Schejbel L, Breinholt MF, Høgdall E, Nørgaard P, Nielsen TH, Pedersen LM, Gang AO. Mutational heterogeneity in large B-cell lymphoma: insights from paired biopsies. Ann Hematol 2024:10.1007/s00277-024-06108-w. [PMID: 39644335 DOI: 10.1007/s00277-024-06108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Large B-cell lymphoma (LBCL) exhibits striking clinical and molecular heterogeneity. New approaches have emerged to explore tumor heterogeneity and classify LBCL into biological categories. Consequently, the informational requirements from diagnostic samples to provide the necessary information have increased, but the adequacy of single-site biopsies to provide such information is largely unknown. Here we describe spatial and temporal intra-patient variations in the mutational landscape of paired biopsies. METHODS Paired biopsies from 30 patients with LBCL were obtained from spatially distinct sites at the time of primary diagnosis before treatment and/or at a subsequent relapse. The samples were sequenced using a custom designed 59-gene next generation sequencing (NGS) lymphoma panel. RESULTS Differences in detected mutations of pathogenic or likely pathogenic significance were frequent both when comparing paired diagnostic biopsies, 2/6 (33%), and when comparing paired biopsies at primary diagnosis and relapse, 8/16 (50%). Mutational heterogeneity tended to increase with longer time interval between biopsies. Analysis of paired diagnostic and relapse biopsies revealed that certain clones present at diagnosis disappeared, while new clones emerged at relapse. Notably, TP53 mutations were detected in six out of seven patients in an extranodal location. In two cases, TP53 mutation was only detected in the relapse biopsy. Several of the mutations identified in this study are used or under investigation as targets for cancer treatments. CONCLUSION Multi-site biopsies revealed spatial and temporal mutational heterogeneity in patients with LBCL. Our findings indicate that mutational differences between biopsy pairs can occur at all timepoints examined. This underscores the necessity of performing repeat biopsies with each relapse to capture the full spectrum of genetic aberrations.
Collapse
Affiliation(s)
| | - Lone Schejbel
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Fredslund Breinholt
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Nørgaard
- Department of Pathology, Hvidovre Hospitalet, Hvidovre, Denmark
| | - Torsten Holm Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Hematology, Zealand Hospital, Roskilde, Denmark
- Danish Medicines Agency, Copenhagen, Denmark
| | - Lars Møller Pedersen
- Department of Hematology, Zealand Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Bisig B, Lefort K, Carras S, de Leval L. Clinical use of circulating tumor DNA analysis in patients with lymphoma. Hum Pathol 2024:105679. [PMID: 39491629 DOI: 10.1016/j.humpath.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The analysis of circulating tumor DNA (ctDNA) in liquid biopsy specimens has an established role for the detection of predictive molecular alterations and acquired resistance mutations in several tumors. The low-invasiveness of this approach allows for repeated sampling and dynamic monitoring of disease evolution. Originating from the entire body tumor bulk, plasma-derived ctDNA reflects intra- and interlesional genetic heterogeneity. In the management of lymphoma patients, ctDNA quantification at various timepoints of the patient's clinical history is emerging as a complementary tool that may improve risk stratification, assessment of treatment response and early relapse detection during follow-up, most prominently in patients with diffuse large B-cell lymphoma or classic Hodgkin lymphoma. While liquid biopsies have not yet entered standard-of-care treatment protocols in these settings, several trials have provided evidence that at least a subset of lymphoma patients may benefit from the introduction of liquid biopsies into daily clinical care. In parallel, continuous technological developments have enabled highly sensitive ctDNA assessment methods, which span from locus-specific techniques identifying single hotspot mutations, to sequencing panels and genome-wide approaches that explore broader genetic and epigenetic alterations. Here, we provide an overview of current methods and ongoing technical developments for ctDNA evaluation. We also summarize the most important data from a selection of clinical studies that have explored the clinical use of ctDNA in several lymphoma entities.
Collapse
Affiliation(s)
- Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Karine Lefort
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Sylvain Carras
- Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Department of Molecular Biology and Department of Oncohematology, University Hospital Grenoble and University Grenoble Alpes, Grenoble, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
3
|
Nielsen PR, Schejbel L, Josefsson PL, Skov L, Nielsen SL. Atypical presentation of γ/δ mycosis fungoides with an unusual phenotype and SOCS1 mutation. Open Life Sci 2024; 19:20220925. [PMID: 39091627 PMCID: PMC11292030 DOI: 10.1515/biol-2022-0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
Mycosis fungoides is the most frequent subtype of primary cutaneous T-cell lymphomas. The diagnosis is based on a thorough clinic-pathologic correlation, which can, especially in early-stage disease, be challenging due to similarities with several benign skin disorders such as psoriasis and atopic dermatitis. Here, we present a case of an 81-year-old man with a 20-year-long medical history of skin problems treated as psoriasis with limited effect. Since December 2021, the patient experienced worsening of his skin symptoms with rapidly growing tumors and widespread patches and plaques. Positron emission tomography/computed tomography evaluation revealed markedly metabolic activity related to the skin tumors and increased FDG uptake in several retroperitoneal lymph nodes. Histological assessment of skin biopsies demonstrated a highly proliferative T-cell lymphoma with a γ/δ+ and CD8+ cytotoxic phenotype. The morphology of the tumor cells appeared blastic with an abnormal immunephenotype CD3+, CD2-, CD5dim, CD4-, CD8+, CD56-, and CD30-. Next-generation sequencing detected a likely pathogenic SOCS1 mutation with an allele frequency of 72% as well as a STAT3 variant of unknown significance. This case highlights the diagnostic complexity of an indolent skin lymphoma evolving into an aggressive cytotoxic lymphoma.
Collapse
Affiliation(s)
- Pia Rude Nielsen
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Staircase 7, floor 4 (L5), 2730 Herlev, Copenhagen, Denmark
| | - Lone Schejbel
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pär Lars Josefsson
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Signe Ledou Nielsen
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
4
|
Østergaard S, Schejbel L, Breinholt MF, Pedersen MØ, Hammer T, Munksgaard L, Nørgaard P, Høgdall E, Gjerdrum LMR, Nielsen TH. Mutational landscape in Waldenström macroglobulinemia evaluated using a next-generation sequencing lymphoma panel in routine clinical practice. Leuk Lymphoma 2024; 65:758-767. [PMID: 38340359 DOI: 10.1080/10428194.2024.2313623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Next-generation sequencing (NGS) affords comprehensive insights into the genomic landscape of lymphomas. We examined the mutational pattern in patients with Waldenström macroglobulinemia (WM) or lymphoplasmacytic lymphoma (LPL) as well as the diagnostic and clinical utility of a tailored NGS lymphoma panel. A consecutive series of 45 patients was reviewed and NGS analysis was performed as part of a routine diagnostic setup. The custom designed NGS panel assayed all coding sequences of 59 genes of known clinical significance in lymphoid neoplasms. The most frequently mutated genes were MYD88, CXCR4, BIRC3, CD79B, and ARID1A. Additional somatic mutations were detected in 17 genes with four mutations categorized as pathogenic or likely pathogenic. BIRC3 and TP53 mutations were associated with adverse clinical phenotypes. NGS performance for the MYD88L265P variant was 96% when compared to qPCR. In conclusion, targeted NGS provided important diagnostic and prognostic information in a routine clinical setting.
Collapse
Affiliation(s)
- Simon Østergaard
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Lone Schejbel
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mette Ølgod Pedersen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Troels Hammer
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Munksgaard
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Peter Nørgaard
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
- Department of Pathology, Hvidovre Hospital, Hvidovre, Denmark
| | - Estrid Høgdall
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Holm Nielsen
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Danish Medicines Agency, Copenhagen, Denmark
| |
Collapse
|
5
|
Monick S, Rosenthal A. Circulating Tumor DNA as a Complementary Prognostic Biomarker during CAR-T Therapy in B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2024; 16:1881. [PMID: 38791959 PMCID: PMC11120115 DOI: 10.3390/cancers16101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The emergence of CD19-directed chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment paradigm for R/R B-cell NHLs. However, challenges persist in accurately evaluating treatment response and detecting early relapse, necessitating the exploration of novel biomarkers. Circulating tumor DNA (ctDNA) via liquid biopsy is a non-invasive tool for monitoring therapy efficacy and predicting treatment outcomes in B-NHL following CAR-T therapy. By overcoming the limitations of conventional imaging modalities, ctDNA assessments offer valuable insights into response dynamics, molecular mechanisms of resistance, and early detection of molecular relapse. Integration of ctDNA monitoring into clinical practice holds promise for personalized therapeutic strategies, guiding the development of novel targeted therapies, and enhancing patient outcomes. However, standardization of assay methodologies and consensus on clinical response metrics are imperative to unlock the full potential of ctDNA in the management of B-NHL. Prospective validation of ctDNA in clinical trials is necessary to establish its role as a complementary decision aid.
Collapse
Affiliation(s)
- Sarah Monick
- Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA;
| | | |
Collapse
|