1
|
Yang X, Liu Q, Ma Y, Xie J, Cao B. Molecular dynamics study on the kinematic viscosity, density and structure of fuel blends containing n-decane and biofuel compound of ethyl decanoate or ethyl dodecanoate. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Balli O, Caliskan H. Environmental impact assessments of different auxiliary power units used for commercial aircraft by using global warming potential approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87334-87346. [PMID: 35804227 DOI: 10.1007/s11356-022-21876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In this paper, environmental impact analysis is applied to the various auxiliary power units (APUs) used for commercial aircraft in air transportation sector. The exhaust emissions of different auxiliary power units used in commercial aircraft are investigated. The emission index (EI), global warming potential (GWP) rate, global warming potential index (GWPI), environmental impact (EnI) rate, environmental impact index (EnII), environmental damage cost (EDC) rate, and environmental damage cost index (EDCI) of the exhaust emissions of APUs are computed. The GTCP36-300 model APU has the lowest total emission rate (TER) with 1.333 kg/h, the GTC85-129 model APU has the maximum total environmental index (TEI) by 24.719 g/kg-fuel, the GTCP36-300 model APU has the best total global warming potential value with 2709.176 kg/h CO2_eqv, the TSCP700 model APU has the worst global warming potential index rate as 52.481 kg/kWh CO2_eqv, the best total environmental damage cost rate is calculated to be 3.717 €/h for GTC85-72 model APU, the TSCP700 model APU has the highest environmental damage cost index with 0.130 €/kWh, the maximum total environmental impact is computed to be 5656.378 mPts/h for GTCP660 model APU, and the best total environmental impact index is determined for the GTC85-72 model APU.
Collapse
Affiliation(s)
- Ozgur Balli
- 1st Air Maintenance Factory Directorship, General Directorate of Military Factories, Ministry of National Defense, Eskisehir, Turkey.
| | - Hakan Caliskan
- Department of Mechanical Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| |
Collapse
|
3
|
Ghedhaïfi W, Montreuil E, Chouak M, Garnier F. 3D High-Resolution Modeling of Aircraft-Induced NO x Emission Dispersion in CAEPport Configuration Using Landing and Take-Off Trajectory Tracking. WATER, AIR, AND SOIL POLLUTION 2022; 233:418. [PMID: 36248726 PMCID: PMC9555266 DOI: 10.1007/s11270-022-05889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Pollutant emissions from aircraft operations contribute to the degradation of air quality in and around airports. Meeting the ICAO's environmental certification standards regarding both gaseous and particulate aircraft engine emissions is one of the main challenges for air-transportation development over the coming years. To increase the accuracy of airport air pollution monitoring and prediction, advanced decision-making tools need to be developed. In this context, the present study aimed at demonstrating the modeling capabilities of an innovative methodology that accounts for the microscale evolution of aircraft emissions, both spatially and temporally. For this purpose, 3D high-resolution CFD simulations were carried out in the CAEPport configuration (medium-size mock airport) as defined by the Committee on Aviation Environmental Protection (CAEP/8) for local air-quality assessment. The modeled domain extends up to 8 km around the airport. A spatial resolution down to 1 m was used around buildings to refine the prediction of pollutant-emission concentrations. The model accounts for ambient meteorological conditions along with the background chemical composition. NO x emissions from main engines and auxiliary power units (APUs) were individually tracked along LTO trajectories with a time resolution down to 1 s. The impact of atmospheric stability was investigated in three cases, i.e., stable, neutral, and unstable. The results show NO2 dominating in apron areas due to the low power setting of main engines along APU contribution during extended parking. Conversely, a domination of NO emissions was observed at the runway threshold due to the high power setting of the main engines. Stable atmospheric conditions promoted higher NO and NO2 concentrations as compared to both neutral and unstable cases. The use of APUs contributed to higher concentrations of both NO and NO2 emissions and especially of NO2 in terminal areas.
Collapse
Affiliation(s)
- W. Ghedhaïfi
- Multi-Physics Department for Energetics, ONERA, University of Paris Saclay, 91123 Palaiseau, France
| | - E. Montreuil
- Multi-Physics Department for Energetics, ONERA, University of Paris Saclay, 91123 Palaiseau, France
| | - M. Chouak
- Department of Mechanical Engineering, ÉTS, University of Quebec, Montreal, QC Canada
| | - F. Garnier
- Department of Mechanical Engineering, ÉTS, University of Quebec, Montreal, QC Canada
| |
Collapse
|
4
|
Review: Particulate Matter Emissions from Aircraft. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The contribution of aircraft operations to ambient ultrafine particle (UFP) concentration at and around airports can be significant. This review article considers the volatile and non-volatile elements of particulate matter emissions from aircraft engines, their characteristics and quantification and identifies gaps in knowledge. The current state of the art emission inventory methods and dispersion modelling approaches are reviewed and areas for improvement and research needs are identified. Quantification of engine non-volatile particulate matter (nvPM) is improving as measured certification data for the landing and take-off cycle are becoming available. Further work is needed: to better estimate nvPM emissions during the full-flight; to estimate non-regulated (smaller) engines; and to better estimate the emissions and evolution of volatile particles (vPM) in the aircraft exhaust plume. Dispersion modelling improvements are also needed to better address vPM. As the emissions inventory data for both vPM and nvPM from aircraft sources improve, better estimates of the contribution of aircraft engine emissions to ambient particulate concentrations will be possible.
Collapse
|
5
|
Zhang C, Chen L, Ding S, Zhou X, Chen R, Zhang X, Yu Z, Wang J. Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153233. [PMID: 35066040 DOI: 10.1016/j.scitotenv.2022.153233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/26/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Global air transportation has grown rapidly in the past decade until the recent coronavirus pandemic. Previous research has demonstrated that particulate matter (PM) emissions from aircraft gas turbine engines can impair human health and environment, and may play a significant role in global climate change via direct absorption of solar radiation and indirect effect by their interaction with clouds. Using alternative aviation fuels (AAFs) from different sources have become a promising means to reduce aviation PM emissions and ensure energy sustainability. This work presents a review of non-volatile PM (nvPM) emission characteristics of aircraft gas turbine engines burning conventional aviation fuel (CAF) and CAF/AAF blends from recent ground and cruise tests. Current engine emission regulations, as well as available aviation PM emission prediction models and inventories are also discussed. Available nvPM emission characteristics, including particle number, particle mass, and particle size distribution (PSD), are analyzed and compared among different studies. The synthesized results indicate that burning AAFs tends to generate smaller size nvPM and reduce up to 90% nvPM number as well as 60-85% nvPM mass. The reduction is the most significant at low engine power settings, but becomes marginal at high engine power settings. The utilization of AAF blends reduces nvPM emission yet increases water vapor emission, which may promote contrail and even widespread cirrus cloud formation. Therefore, more investigation is required to quantify the potential impact of burning AAF at cruise altitudes on cloud formation and climate change. An appropriate estimation method for the particle number emissions from aircraft gas turbine engines fueled by both CAF and CAF/AAF blends is also in need aiming to establish a global aviation nvPM emission inventory and improve relevant global climate models.
Collapse
Affiliation(s)
- Cuiqi Zhang
- School of Energy and Power Engineering, Beihang University, Beijing, China; Shenyuan Honors College of Beihang University, Beihang University, Beijing, China
| | - Longfei Chen
- School of Energy and Power Engineering, Beihang University, Beijing, China.
| | - Shuiting Ding
- School of Energy and Power Engineering, Beihang University, Beijing, China
| | - Xingfan Zhou
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Zhenhong Yu
- Hudson River Research, LLC, 123 Town Square Place, Jersey City, NJ 07310, United States
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
6
|
Durdina L, Brem BT, Elser M, Schönenberger D, Siegerist F, Anet JG. Reduction of Nonvolatile Particulate Matter Emissions of a Commercial Turbofan Engine at the Ground Level from the Use of a Sustainable Aviation Fuel Blend. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14576-14585. [PMID: 34662519 DOI: 10.1021/acs.est.1c04744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonvolatile particulate matter (nvPM) emissions from aircraft turbine engines deteriorate air quality and contribute to climate change. These emissions can be reduced using sustainable aviation fuels (SAFs). Here, we investigate the effects of a 32% SAF blend with fossil fuel on particle size distributions and nvPM emission indices of a widely used turbofan engine. The experiments were conducted in a test cell using a standardized sampling and measurement system. The geometric mean diameter (GMD) increased with thrust from ∼8 nm at idle to ∼40 nm at take-off, and the geometric standard deviation (GSD) was in the range of 1.74-2.01. The SAF blend reduced the GMD and GSD at each test point. The nvPM emission indices were reduced most markedly at idle by 70% in terms of nvPM mass and 60% in terms of nvPM number. The relative reduction of nvPM emissions decreased with the increasing thrust. The SAF blend reduced the nvPM emissions from the standardized landing and take-off cycle by 20% in terms of nvPM mass and 25% in terms of nvPM number. This work will help develop standardized models of fuel composition effects on nvPM emissions and evaluate the impacts of SAF on air quality and climate.
Collapse
Affiliation(s)
- Lukas Durdina
- Advanced Analytical Technologies, Empa, Dübendorf CH-8600, Switzerland
| | - Benjamin T Brem
- Advanced Analytical Technologies, Empa, Dübendorf CH-8600, Switzerland
| | - Miriam Elser
- Advanced Analytical Technologies, Empa, Dübendorf CH-8600, Switzerland
| | | | | | - Julien G Anet
- Centre for Aviation, School of Engineering, Zurich University of Applied Sciences, Winterthur CH-8401, Switzerland
| |
Collapse
|
7
|
Pirhadi M, Mousavi A, Sowlat MH, Janssen NAH, Cassee FR, Sioutas C. Relative contributions of a major international airport activities and other urban sources to the particle number concentrations (PNCs) at a nearby monitoring site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114027. [PMID: 32014744 DOI: 10.1016/j.envpol.2020.114027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/25/2019] [Accepted: 01/19/2020] [Indexed: 05/20/2023]
Abstract
In this study, the positive matrix factorization (PMF) source apportionment model was employed to quantify the contributions of airport activities to particle number concentrations (PNCs) at Amsterdam Schiphol. Time-resolved particle number size distributions in parallel with the concentrations of auxiliary variables, including gaseous pollutants (NOx and CO), black carbon, PM2.5 mass, and number of arrivals/departures were measured for 32 sampling days over a 6-month period near Schiphol airport to be used in the model. PMF results revealed that airport activities, cumulatively, accounted for around 79.3% of PNCs and our model segregated them into three major groups: (i) aircraft departures, (ii) aircraft arrivals, and (iii) ground service equipment (GSE) (with some contributions of local road traffic, mostly from airport parking lots). Aircraft departures and aircraft arrivals showed mode diameters <20 nm and contributed, respectively, to 46.1% and 26.7% of PNCs. The factor GSE/local road traffic, with a mode diameter of around 60-80 nm, accounted for 6.5% of the PNCs. Road traffic related mainly to the surrounding freeways was characterized with a mode diameter of 30-40 nm; this factor contributed to 18.0% of PNCs although its absolute PNCs was comparable with that of areas heavily impacted by traffic emissions. Lastly, urban background with a mode diameter at 150-225 nm, had a minimal contribution (2.7%) to PNCs while dominating the particle volume/mass concentrations with a contribution of 58.2%. These findings illustrate the dominant role of the airport activities in ambient PNCs in the surrounding areas. More importantly, the quantification of the contributions of different airport activities to PNCs is a useful tool to better control and limit the increased PNCs near the airports that could adversely impact the health of the adjacent urban communities.
Collapse
Affiliation(s)
- Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammad H Sowlat
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, Netherlands
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Kinsey JS, Squier W, Timko M, Dong Y, Logan R. Characterization of the Fine Particle Emissions from the Use of Two Fischer-Tropsch Fuels in a CFM56-2C1 Commercial Aircraft Engine. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2019; 33:8821-8834. [PMID: 34385759 PMCID: PMC8356558 DOI: 10.1021/acs.energyfuels.9b00780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fine particulate matter (PM) emissions from the use of two types of Fischer-Tropsch aviation fuels and their 50:50 blends with military JP-8 were quantified as part of the first Alternative Aviation Fuel Experiment (AAFEX). Measurements were made at 30-m downstream of a CFM56-2C1 engine for PM mass and number, particle size distribution, black carbon (BC), and volatile PM (sulfate + organics) using selected on-line instrumentation. The PM number emission index (EI N ) ranged from ~ 2 × 1015 to 7 × 1016 particles/kg fuel burned depending on fuel flow, fuel composition, and sampling temperature with the magnitude of the emissions inversely correlated to fuel flow. The PM mass emissions (EI M ) measured in the study varied from ~ 5 to 680 mg/kg fuel again depending on fuel flow, fuel type, and sampling temperature with a characteristic U-shaped curve of EI M with respect to fuel flow observed from the data. At low fuel flow (corresponding to low engine power), particle number and volume size distributions contained a single mode whereas at higher engine power, a bi-modal distribution was observed. The BC emissions varied from ~ 3 to 415 mg/kg fuel depending on fuel type and were found to exponentially increase with engine power (fuel flow). The volatile PM varied with sample temperature, fuel type, and increasing fuel flow within the range of EIs from ~ 0.4 to 11 mg/kg fuel with the highest values being at low fuel flow. Finally, the use of the two neat alternative fuels reduced the EI N by a median value of 70-73% and the EI M by ~ 94% as compared to JP-8 across all power conditions tested.
Collapse
Affiliation(s)
- John S. Kinsey
- U. S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, MD E343-02, Research Triangle Park, NC 27711, United States
| | - William Squier
- U. S. Environmental Protection Agency, Office of Enforcement and Compliance Assurance, Denver, CO 80225, United States
| | - Michael Timko
- Worcester Polytechnic Institute, Worcester, MA 01609 United States (formerly Aerodyne Research, Inc., Billerica, MA United States)
| | - Yuanji Dong
- 233 Lifeson Way, Cary, NC 27519 United States
| | - Russell Logan
- Jacobs Technology, Research Triangle Park, NC 27711 United States
| |
Collapse
|
9
|
Kinsey JS, Corporan E, Pavlovic J, DeWitt M, Klingshirn C, Logan R. Comparison of measurement methods for the characterization of the black carbon emissions from a T63 turboshaft engine burning conventional and Fischer-Tropsch fuels. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:576-591. [PMID: 30526430 PMCID: PMC7382935 DOI: 10.1080/10962247.2018.1556188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 05/12/2023]
Abstract
Emission measurements of black carbon (BC) mass were conducted on a T63 turboshaft engine, operated at idle and cruise power with conventional and alternative fuels, using an Artium LII-300 laser-induced incandescence analyzer (LII) and AVL model 483 micro soot sensor (MSS) photoacoustic instrument using the manufacturer's calibration for both instruments. These measurements were compared with elemental carbon (EC) determined by manual and semicontinuous thermal-optical transmission analyses according to National Institute for Occupational Safety and Health (NIOSH) method 5040 as the reference method. The results indicate that both the LII and MSS instruments show good linear correlation with EC for the two fuels and two engine power conditions evaluated. The LII measurements were observed to be biased high (27-49%) and the MSS measurements were biased low (24-35%) relative to EC. The agreement between the instruments and the reference method was substantially improved by applying a calibration of the instruments against a common BC aerosol source. Test data also suggest that the two instruments show some sensitivity to particle size (or properties related to size), specifically for particles with a geometric mean diameter (GMD) <30 nm. This sensitivity is problematic, since new engines or certain combustion conditions in current engines will produce smaller particles compared with the T63 model tested in this study. Further assessments of instrument performance for particles within this size range are therefore warranted. Implications: Accurate black carbon emission measurements are needed to certify new and in-production commercial aircraft engines. Both the Artium LII-300 and AVL 483 micro soot sensor are currently approved by the International Civil Aviation Organization for this purpose. This study compares the two instruments against elemental carbon (EC) using NIOSH method 5040 as the reference using a T63 turboshaft engine. The results indicate that both instruments correlate reasonably well with EC, and the correlation substantially improved when applying a calibration against a common aerosol source. Sensitivity to particle size may be an issue for both instruments.
Collapse
Affiliation(s)
- John S Kinsey
- a National Risk Management Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Edwin Corporan
- b U.S. Air Force Research Laboratory , Wright-Patterson Air Force Base , Dayton , OH , USA
| | | | - Matthew DeWitt
- d Fuels and Combustion Divison , University of Dayton Research Institute , Dayton , OH , USA
| | - Christopher Klingshirn
- d Fuels and Combustion Divison , University of Dayton Research Institute , Dayton , OH , USA
| | | |
Collapse
|
10
|
Ubogu EA, Cronly J, Khandelwal B, Roy S. Determination of the effective density and fractal dimension of PM emissions from an aircraft auxiliary power unit. J Environ Sci (China) 2018; 74:11-18. [PMID: 30340664 DOI: 10.1016/j.jes.2018.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Gas turbine particulate matter (PM) emissions contribute to air quality degradation and are dangerous to both human health and the environment. Currently, PM mass concentrations determined from gravimetric measurements are the default parameter for gas turbine emissions compliance with PM regulations. The measurement of particle size however, is of significant interest due to its specific effects on health and climate science. The mass concentration can be determined from the number-size distribution measurement but requires the experimental evaluation of effective density of a number of particles to establish the power-law relationship. In this study, the effective density of PM emissions from an aircraft Auxiliary Power Unit (APU) with petroleum diesel, conventional aviation fuel (Jet A-1) and a multicomponent surrogate fuel (Banner NP 1014) as combusting fuels have been compared. An experimental configuration consisting of a Differential Mobility Analyzer, a Centrifugal Particle Mass Analyzer and a Condensation Particle Counter (DMA-CPMA-CPC) was deployed for this purpose. Overall, a decrease in the effective density (220-1900km-3) with an increase in the particle size was observed and found to depend on the engine operating condition and the type of fuel undergoing combustion. There was a change in the trend of the effective densities between the PM emissions generated from the fuels burnt and the engine operating conditions with increasing particle size.
Collapse
Affiliation(s)
- Emamode A Ubogu
- Low Carbon Combustion Centre, University of Sheffield, Unit 2, Crown Works Industrial Estate, Rotherham Road, Sheffield S20 1AH, United Kingdom
| | - James Cronly
- Low Carbon Combustion Centre, University of Sheffield, Unit 2, Crown Works Industrial Estate, Rotherham Road, Sheffield S20 1AH, United Kingdom.
| | - Bhupendra Khandelwal
- Low Carbon Combustion Centre, University of Sheffield, Unit 2, Crown Works Industrial Estate, Rotherham Road, Sheffield S20 1AH, United Kingdom
| | - Swapneel Roy
- Low Carbon Combustion Centre, University of Sheffield, Unit 2, Crown Works Industrial Estate, Rotherham Road, Sheffield S20 1AH, United Kingdom
| |
Collapse
|
11
|
Lobo P, Rye L, Williams PI, Christie S, Uryga-Bugajska I, Wilson CW, Hagen DE, Whitefield PD, Blakey S, Coe H, Raper D, Pourkashanian M. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 1: gaseous and particulate matter emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10805-10811. [PMID: 22913288 DOI: 10.1021/es301898u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.
Collapse
Affiliation(s)
- Prem Lobo
- Center of Excellence for Aerospace Particulate Emissions Reduction Research, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|