1
|
Ding Y, Zhu S, Wu C, Qian L, Li D, Wang L, Wang Y, Zhang W, Yang M, Ding J, Wu X, Zhang X, Gao Y, Yin Z. Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:922-929. [PMID: 30744358 PMCID: PMC6601058 DOI: 10.5713/ajas.18.0510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022]
Abstract
Objective Mutations in low-density lipoprotein receptor (LDLR), which encodes a critical protein for cholesterol homeostasis and lipid metabolism in mammals, are involved in cardiometabolic diseases, such as familial hypercholesterolemia in pigs. Whereas microRNAs (miRNAs) can control LDLR regulation, their involvement in circulating cholesterol and lipid levels with respect to cardiometabolic diseases in pigs is unclear. We aimed to identify and analyze LDLR as a potential target gene of SSC-miR-20a. Methods Bioinformatic analysis predicted that porcine LDLR is a target of SSC-miR-20a. Wild-type and mutant LDLR 3′-untranslated region (UTR) fragments were generated by polymerase chain reaction (PCR) and cloned into the pGL3-Control vector to construct pGL3 Control LDLR wild-3′-UTR and pGL3 Control LDLR mutant-3′-UTR recombinant plasmids, respectively. An miR-20a expression plasmid was constructed by inserting the porcine pre-miR-20a-coding sequence between the HindIII and BamHI sites in pMR-mCherry, and constructs were confirmed by sequencing. HEK293T cells were co-transfected with the miR-20a expression or pMR-mCherry control plasmids and constructs harboring the corresponding 3′-UTR, and relative luciferase activity was determined. The relative expression levels of miR-20a and LDLR mRNA and their correlation in terms of expression levels in porcine liver tissue were analyzed using reverse-transcription quantitative PCR. Results Gel electrophoresis and sequencing showed that target gene fragments were successfully cloned, and the three recombinant vectors were successfully constructed. Compared to pMR-mCherry, the miR-20a expression vector significantly inhibited wild-type LDLR-3′-UTR-driven (p<0.01), but not mutant LDLR-3′-UTR-driven (p>0.05), luciferase reporter activity. Further, miR-20a and LDLR were expressed at relatively high levels in porcine liver tissues. Pearson correlation analysis revealed that porcine liver miR-20a and LDLR levels were significantly negatively correlated (r = −0.656, p<0.05). Conclusion LDLR is a potential target of miR-20a, which might directly bind the LDLR 3′-UTR to post-transcriptionally inhibit expression. These results have implications in understanding the pathogenesis and progression of porcine cardiovascular diseases.
Collapse
Affiliation(s)
- Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shujiao Zhu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chaodong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Qian
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - DengTao Li
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuanlang Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Min Yang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yafei Gao
- Anhui Haoxiang Agriculture And Animal Husbandry Co. LTD, Bozhou, Anhui 236700, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
2
|
Abstract
Background Piglet birth weight variability, a trait also known as the within-litter homogeneity of birth weight, reflects the sow’s prolificacy, because it is positively genetically correlated with preweaning mortality but negatively correlated with the mean growth of piglets during sucking. In addition, the maternal additive genetic variance and heritability has been found exist for this trait, thus, reduction in the variability of piglet birth weight to improve the sow prolificacy is possible by selective breeding. Results We performed a genome wide association study (GWAS) in 82 sows with extreme standard deviation of birth weights within the first parity to identify significant SNPs, and finally 266 genome-wide significant SNPs (p < 0.01) were identified. These SNPs were mainly enriched on chromosome 7, 1, 13, 14, 15 and 18. We further scanned genes of the top 50 SNPs with the lowest p values and found some genes involved in plasma glucose homeostasis (GLP1R) and lipid metabolism as well as maternal-fetal lipid transport (AACS, APOB, OSBPL10 and LRP1B) which may contribute to the birth weight variability trait. Conclusions Birth weight variability trait has a low heritability. It is not easy to get significant signal by GWAS using small sample size. Herein, we identified some candidate chromosome regions especially chromosome 7 and suggested five genes which may provide some information for the further study. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0309-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuemin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA.
| | - Dadong Deng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoping Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Manunza A, Casellas J, Quintanilla R, González-Prendes R, Pena RN, Tibau J, Mercadé A, Castelló A, Aznárez N, Hernández-Sánchez J, Amills M. A genome-wide association analysis for porcine serum lipid traits reveals the existence of age-specific genetic determinants. BMC Genomics 2014; 15:758. [PMID: 25189197 PMCID: PMC4164741 DOI: 10.1186/1471-2164-15-758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/25/2014] [Indexed: 01/07/2023] Open
Abstract
Background The genetic determinism of blood lipid concentrations, the main risk factor for atherosclerosis, is practically unknown in species other than human and mouse. Even in model organisms, little is known about how the genetic determinants of lipid traits are modulated by age-specific factors. To gain new insights into this issue, we have carried out a genome-wide association study (GWAS) for cholesterol (CHOL), triglyceride (TRIG) and low (LDL) and high (HDL) density lipoprotein concentrations measured in Duroc pigs at two time points (45 and 190 days). Results Analysis of data with mixed-model methods (EMMAX, GEMMA, GenABEL) and PLINK showed a low positional concordance between trait-associated regions (TARs) for serum lipids at 45 and 190 days. Besides, the proportion of phenotypic variance explained by SNPs at these two time points was also substantially different. The four analyses consistently detected two regions on SSC3 (124 Mb, CHOL and LDL at 190 days) and SSC6 (135 Mb, CHOL and TRIG at 190 days) with highly significant effects on the porcine blood lipid profile. Moreover, we have found that SNP variation within SSC3, SSC6, SSC10, SSC13 and SSC16 TARs is associated with the expression of several genes mapping to other chromosomes and related to lipid metabolism. Conclusions Our data demonstrate that the effects of genomic determinants influencing lipid concentrations in pigs, as well as the amount of phenotypic variance they explain, are influenced by age-related factors. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-758) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
4
|
Zeng Z, Chen R, Liu C, Yang H, Chen C, Huang L. Evaluation of the causality of the low-density lipoprotein receptor gene (LDLR) for serum lipids in pigs. Anim Genet 2014; 45:665-73. [PMID: 24954195 DOI: 10.1111/age.12183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 11/30/2022]
Abstract
A significant quantitative trait locus (QTL) for low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) was identified around the LDLR gene on chromosome 2 (SSC2) in a White Duroc × Erhualian F2 resource population and Sutai pigs in our previous study. However, in previous reports, the causality of LDLR with serum lipids is controversial in pigs. To systematically assess the causality of LDLR with serum lipids, association analyses were successively performed in three populations: Sutai pigs, a White Duroc × Erhualian F2 resource population and a Duroc × (Landrace × Large White) population. We first performed a haplotype-based association study with 60K SNP genotyping data and evidenced the significant association with LDL-C and TC around the LDLR gene region. We also found that there is more than one QTL for LDL-C and TC on SSC2. Then, we evaluated the causalities of two missense mutations, c.1812C>T and c.1520A>G, with LDL-C and TC. We revealed that the c.1812C>T SNP showed the strongest association with LDL-C (P = 5.40 × 10(-11) ) and TC (P = 3.64 × 10(-8) ) and explained all the QTL effect in Sutai pigs. Haplotype analysis found that two missense SNPs locate within a 1.93-Mb haplotype block. One major haplotype showed the strongest significant association with LDL-C (P = 4.62 × 10(-18) ) and TC (P = 1.06 × 10(-9) ). However, the c.1812C>T SNP was not identified in the White Duroc × Erhualian intercross, and the association of c.1520A>G with both LDL-C and TC did not achieve significance in this F2 population, suggesting population heterogeneity. Both missense mutations were identified in the Duroc × (Landrace × Large White) population and showed significant associations with LDL-C and TC. Our data give evidence that the LDLR gene should be a candidate causative gene for LDL-C and TC in pigs, but heterogeneity exists in different populations.
Collapse
Affiliation(s)
- Z Zeng
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | |
Collapse
|
5
|
Chen C, Yang B, Zeng Z, Yang H, Liu C, Ren J, Huang L. Genetic dissection of blood lipid traits by integrating genome-wide association study and gene expression profiling in a porcine model. BMC Genomics 2013; 14:848. [PMID: 24299188 PMCID: PMC4046658 DOI: 10.1186/1471-2164-14-848] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 11/19/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) are highly heritable traits that are used clinically to evaluate risk for cardiovascular disease in humans. In this study, we applied a genome-wide association study (GWAS) in 1,075 pigs from two populations and gene expression studies on 497 liver samples to dissect the genetic basis of serum lipids in a pig model. RESULTS We totally identified 8, 5, 2 and 3 genomic loci harboring 109 SNPs that were significantly associated with LDL-C, TC, TG and the ratio of HDL-C/LDL-C in two experimental populations, respectively. In the F2 population, the most prominent SNP was identified at the SSC3: 124,769,847 bp where APOB is the well-known candidate gene. However, in the Sutai population, the most number of significant SNPs was identified at SSC2: 64.97-82.22 Mb where LDLR was identified as the candidate gene. Furthermore, we firstly reported 4 novel genomic loci in pigs harboring the LDL-C-associated SNPs. We also observed obvious population heterogeneity in the two tested populations. Through whole-genome gene expression analysis, we detected 718 trait-correlated expressions. Many of these transcripts correspond to candidate genes for blood lipids in humans. The GWAS mapped 120 cis-eQTLs and 523 trans-eQTLs for these transcripts. One gene encoding the transcript gnl|UG|Ssc#S35330332 stands out to be an important candidate gene for LDL-C by an integrative analysis of GWAS, eQTL and trait-associated expression. CONCLUSIONS We identified the genomic regions or candidate genes associated with blood lipids by an integrative analysis of GWAS, QTT and eQTL mapping in pigs. The findings would benefit the further identification of the causative genes for blood lipid traits in both pigs and humans.
Collapse
Affiliation(s)
- Congying Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Zhijun Zeng
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Hui Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Chenlong Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| |
Collapse
|
6
|
Casellas J, Vidal O, Pena RN, Gallardo D, Manunza A, Quintanilla R, Amills M. Genetics of serum and muscle lipids in pigs. Anim Genet 2013; 44:609-19. [DOI: 10.1111/age.12049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 01/31/2023]
Affiliation(s)
- J. Casellas
- Departament de Ciència Animal i dels Aliments; Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | - O. Vidal
- Departament de Biologia; Universitat de Girona; Girona 17071 Spain
| | - R. N. Pena
- Departament de Producció Animal; Universitat de Lleida; Lleida 25198 Spain
| | - D. Gallardo
- Departament de Ciència Animal i dels Aliments; Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | - A. Manunza
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| | | | - M. Amills
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; Bellaterra 08193 Spain
| |
Collapse
|
7
|
Cepica S, Zambonelli P, Weisz F, Bigi M, Knoll A, Vykoukalová Z, Masopust M, Gallo M, Buttazzoni L, Davoli R. Association mapping of quantitative trait loci for carcass and meat quality traits at the central part of chromosome 2 in Italian Large White pigs. Meat Sci 2013; 95:368-75. [PMID: 23747631 DOI: 10.1016/j.meatsci.2013.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 01/13/2023]
Abstract
Association mapping of the central part of porcine chromosome 2 harboring QTLs for carcass and meat quality traits was performed with 17 gene-tagged SNPs located between 44.0 and 77.5 Mb on a physical map (Sscrofa10.2) in Italian Large White pigs. For the analyzed animals records of estimated breeding values for average daily gain, back fat thickness, lean cuts, ham weight, feed conversion ratio, pH1, pHu, CIE L*, CIE a*, CIE b* and drip loss were available. A significant QTL for fat deposition (adjusted P=0.0081) and pH1 (adjusted P=0.0972) to MYOD1 at position 44.4 Mb and a QTL for growth and meatiness (adjusted P=0.0238-0.0601) to UBL5 at position 68.9 Mb were mapped. These results from association mapping are much more accurate than those from linkage mapping and facilitate further search for position candidate genes and causative mutations needed for application of markers through marker assisted selection.
Collapse
Affiliation(s)
- S Cepica
- Institute of Animal Physiology and Genetics, The Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ramírez O, Quintanilla R, Varona L, Gallardo D, Díaz I, Pena R, Amills M. DECR1
and ME1
genotypes are associated with lipid composition traits in Duroc pigs. J Anim Breed Genet 2013; 131:46-52. [DOI: 10.1111/jbg.12035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 02/27/2013] [Indexed: 11/29/2022]
Affiliation(s)
- O. Ramírez
- Departament de Ciència Animal i dels Aliments; Facultat de Veterinària; Universitat Autònoma de Barcelona; Bellaterra Spain
| | | | - L. Varona
- Genètica i Millora Animal; IRTA; Lleida Spain
| | - D. Gallardo
- Departament de Ciència Animal i dels Aliments; Facultat de Veterinària; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - I. Díaz
- Centre de Tecnologia de la Carn (IRTA); Monells Spain
| | - R.N. Pena
- Genètica i Millora Animal; IRTA; Lleida Spain
| | - M. Amills
- Departament de Ciència Animal i dels Aliments; Facultat de Veterinària; Universitat Autònoma de Barcelona; Bellaterra Spain
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; Bellaterra Spain
| |
Collapse
|
9
|
Pena RN, Cánovas A, Estany J. Technical note: Efficient protocol for isolation of total ribonucleic acid from lyophilized fat and muscle pig samples1. J Anim Sci 2010; 88:442-5. [DOI: 10.2527/jas.2009-2298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|