1
|
Wang XW, Ding YL, Li CL, Ma Q, Shi YG, Liu GE, Li CJ, Kang XL. Effects of rumen metabolite butyric acid on bovine skeletal muscle satellite cells proliferation, apoptosis and transcriptional states during myogenic differentiation. Domest Anim Endocrinol 2025; 90:106892. [PMID: 39418766 DOI: 10.1016/j.domaniend.2024.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Butyric acid, a pivotal short-chain fatty acid in rumen digestion, profoundly influences animal digestive and locomotor systems. Extensive research indicates its direct or indirect involvement in the growth and development of muscle and fat cells. However, the impact of butyric acid on the proliferation and differentiation of bovine skeletal muscle satellite cells (SMSCs) remains unclear. This study aimed to elucidate the effects of butyrate on SMSCs proliferation and differentiation. After isolating, SMSCs were subjected to varying concentrations of sodium butyrate (NaB) during the proliferation and differentiation stages. Optimal treatment conditions (1 mM NaB for 2 days) were determined based on proliferative force, cell viability, and mRNA expression of proliferation and differentiation marker genes. Transcriptome sequencing was employed to screen for differential gene expression between 1 mM NaB-treated and untreated groups during SMSCs differentiation. Results indicated that lower NaB concentrations (≤1.0 mM) inhibited proliferation while promoting differentiation and apoptosis after a 2-day treatment. Conversely, higher NaB concentrations (≥2.0 mM) suppressed proliferation and differentiation and induced apoptosis. Transcriptome sequencing revealed differential expression of genes(ND1, ND3, CYTB, COX2, ATP6, MYOZ2, MYOZ3, MYBPC1 and ATP6V0A4,etc.) were associated with SMSCs differentiation and energy metabolism, enriching pathways such as Oxidative phosphorylation, MAPK, and Wnt signaling. These findings offer valuable insights into the molecular mechanisms underlying butyrate regulation of bovine SMSCs proliferation and differentiation, as well as muscle fiber type conversion in the future study.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan750002, China
| | - Yan-Ling Ding
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Cheng-Long Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan750002, China
| | - Yuan-Gang Shi
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States.
| | - Xiao-Long Kang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Li Y, Chen X, He J, Zheng P, Luo Y, Yu B, Chen D, Huang Z. Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation through modulation of cecal microbiota and enhanced butyric acid production. J Food Sci 2024; 89:3788-3801. [PMID: 38638069 DOI: 10.1111/1750-3841.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.
Collapse
Affiliation(s)
- Yiqiang Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
3
|
Liu T, Bai Y, Wang C, Zhang T, Su R, Wang B, Duan Y, Sun L, Jin Y, Su L. Effects of Probiotics Supplementation on the Intestinal Metabolites, Muscle Fiber Properties, and Meat Quality of Sunit Lamb. Animals (Basel) 2023; 13:ani13040762. [PMID: 36830552 PMCID: PMC9951964 DOI: 10.3390/ani13040762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
The development of animal husbandry is closely related to the meat quality of small ruminants. Intestinal metabolites and the muscle fiber types of lambs are important factors that affect their meat quality, but few studies have examined the regulation of the "intestinal muscle axis" by probiotics. In this study, 12 Sunit lambs were divided into a control group (C) and a probiotics group (P). The gene expressions of the myosin heavy chain, metabolic enzyme activity, and short-chain fatty acids in the intestines were analyzed using gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR. The results showed that levels of propionic acid and butyric acid in the intestines of group P were significantly higher than in group C (p < 0.05). In addition, probiotics increased the number and area ratio of type I muscle fibers. They also increased the mRNA expression of MyHC IIA and the activity of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH). Propionic acid was negatively correlated with the number ratio of type IIB muscle fibers. Butyric acid was found to be significantly positively correlated with the number ratio of type IIA muscle fibers. Cooking loss, pH24h, and shear force decreased significantly in group P. In conclusion, intestinal metabolites (SCFAs) altered the activity of oxidative-myofibril-metabolizing enzymes and the expression of myosin heavy-chain type IIA, reduced the meat shear values, and improved meat tenderness. This study provides a new basis for improving the production and meat quality of small ruminants.
Collapse
Affiliation(s)
- Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hohhot 010018, China
| | - Yanping Bai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hohhot 010018, China
| | - Chenlei Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hohhot 010018, China
| | - Taiwu Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010017, China
| | - Bohui Wang
- Ordos City Inspection and Testing Center, Ordos 017000, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hohhot 010018, China
- Correspondence: (Y.J.); (L.S.); Tel.: +86-13948111209 (Y.J.); +86-13674859101 (L.S.)
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hohhot 010018, China
- Correspondence: (Y.J.); (L.S.); Tel.: +86-13948111209 (Y.J.); +86-13674859101 (L.S.)
| |
Collapse
|
4
|
Ge Y, Yao S, Shi Y, Cai C, Wang C, Wu P, Cao X, Ye Y. Effects of Low or High Dosages of Dietary Sodium Butyrate on the Growth and Health of the Liver and Intestine of Largemouth Bass, Micropterus salmoides. AQUACULTURE NUTRITION 2022; 2022:6173245. [PMID: 36860455 PMCID: PMC9973142 DOI: 10.1155/2022/6173245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/13/2022] [Indexed: 06/10/2023]
Abstract
The concentration of butyric acid in the intestine increased with the increase in the content of fermentable dietary fibre; however, the potential physiological impact of a high dose of butyric acid on fish has not been sufficiently studied. The aim of this study was to investigate the effect of two dosages of butyric acid on the growth and health of the liver and intestine of the largemouth bass (Micropterus salmoides). Sodium butyrate (SB) was added to the diet at 0 g/kg (CON), 2 g/kg (SB2), and 20 g/kg (SB20), and the juvenile largemouth bass were fed to apparent satiation for 56 days. No significant difference was observed in the specific growth rate or hepatosomatic index among the groups (P > 0.05). The concentration of β-hydroxybutyric acid in the liver, the activities of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase, and the concentrations of triglyceride and total cholesterol in serum increased significantly in the SB20 group compared to the CON group (P < 0.05). The relative expression of fas, acc, il1b, nfkb, and tnfa in the liver of the SB20 groups was also significantly higher than that of the CON group (P < 0.05). The above indicators in the group SB2 had similar change tendencies. The expression of nfkb and il1b in the intestine of both the SB2 and SB20 groups was significantly downregulated compared with that in the CON group (P < 0.05). The size of hepatocytes was enlarged, and the intracellular lipid droplets and the degree of hepatic fibrosis were increased in the SB20 group compared to the CON group. There was no significant difference in intestinal morphology among the groups. The above results indicated that neither 2 g/kg nor 20 g/kg SB had a positive effect on the growth of largemouth bass, while a high dosage of SB induced liver fat accumulation and fibrosis.
Collapse
Affiliation(s)
- Yiyang Ge
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Shibin Yao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Ye Shi
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Chunfang Cai
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Chengrui Wang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Ping Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xiamin Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Yuantu Ye
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Qi R, Sun J, Qiu X, Zhang Y, Wang J, Wang Q, Huang J, Ge L, Liu Z. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets. Sci Rep 2021; 11:11237. [PMID: 34045661 PMCID: PMC8160342 DOI: 10.1038/s41598-021-90881-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Although the importance of the intestinal microbiota in host growth and health is well known, the relationship between microbiota colonization and muscle development is unclear. In this study, the direct causal effects of the colonization of gut microorganisms on the muscle tissue of piglets were investigated. The body weight and lean mass of germ-free (GF) piglets were approximately 40% lower than those of normal piglets. The deletion of the intestinal microbiota led to weakened muscle function and a reduction in myogenic regulatory proteins, such as MyoG and MyoD, in GF piglets. In addition, the blinded IGF1/AKT/mTOR pathway in GF piglets caused muscle atrophy and autophagy, which were characterized by the high expression of Murf-1 and KLF15. Gut microbiota introduced to GF piglets via fecal microbiota transplantation not only colonized the gut but also partially restored muscle growth and development. Furthermore, the proportion of slow-twitch muscle fibers was lower in the muscle of GF piglets, which was caused by the reduced short-chain fatty acid content in the circulation and impaired mitochondrial function in muscle. Collectively, these findings suggest that the growth, development and function of skeletal muscle in animals are mediated by the intestinal microbiota.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| | - Jing Sun
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Xiaoyu Qiu
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China
| | - Yong Zhang
- Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
6
|
Prow NA, Hirata TDC, Tang B, Larcher T, Mukhopadhyay P, Alves TL, Le TT, Gardner J, Poo YS, Nakayama E, Lutzky VP, Nakaya HI, Suhrbier A. Exacerbation of Chikungunya Virus Rheumatic Immunopathology by a High Fiber Diet and Butyrate. Front Immunol 2019; 10:2736. [PMID: 31849947 PMCID: PMC6888101 DOI: 10.3389/fimmu.2019.02736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito transmitted alphavirus associated with a robust systemic infection and an acute inflammatory rheumatic disease. A high fiber diet has been widely promoted for its ability to ameliorate inflammatory diseases. Fiber is fermented in the gut into short chain fatty acids such as acetate, propionate, and butyrate, which enter the circulation providing systemic anti-inflammatory activities. Herein we show that mice fed a high fiber diet show a clear exacerbation of CHIKV arthropathy, with increased edema and neutrophil infiltrates. RNA-Seq analyses illustrated that a high fiber diet, in this setting, promoted a range of pro-neutrophil responses including Th17/IL-17. Gene Set Enrichment Analyses demonstrated significant similarities with mouse models of inflammatory psoriasis and significant depression of macrophage resolution phase signatures in the CHIKV arthritic lesions from mice fed a high fiber diet. Supplementation of the drinking water with butyrate also increased edema after CHIKV infection. However, the mechanisms involved were different, with modulation of AP-1 and NF-κB responses identified, potentially implicating deoptimization of endothelial barrier repair. Thus, neither fiber nor short chain fatty acids provided benefits in this acute infectious disease setting, which is characterized by widespread viral cytopathic effects and a need for tissue repair.
Collapse
Affiliation(s)
- Natalie A Prow
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Thiago D C Hirata
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Pamela Mukhopadhyay
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tiago Lubiana Alves
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joy Gardner
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yee Suan Poo
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Eri Nakayama
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Viviana P Lutzky
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helder I Nakaya
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|