1
|
Bhat RR, Bhat NN, Shabir A, Mir MUR, Ahmad SB, Hussain I, Hussain SA, Ali A, Shamim K, Rehman MU. SNP Analysis of TLR4 Promoter and Its Transcriptional Factor Binding Profile in Relevance to Bovine Subclinical Mastitis. Biochem Genet 2024; 62:3605-3623. [PMID: 38158465 DOI: 10.1007/s10528-023-10578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/28/2023] [Indexed: 01/03/2024]
Abstract
Bovine mastitis is a complex infectious disease that develops in the mammary gland, predominantly caused by a bacterial infection of mammary tissue. Genetic variability of mastitis is well established and depends upon different quantitative trait loci (QTL) related to mastitis resistance or susceptibility. The susceptibility is often attributed to single-nucleotide polymorphisms (SNPs) in the variable cow breed genomes. Several global investigative attempts have resulted in studies mapping mastitis to the variations in the relevant genes. Reports have been attributed to dramatic genetic expression changes in Toll-Like Receptor 4 (TLR4) genes in mastitis-positive cows. However, the mechanism behind this variable genetic expression of TLR4 genes has been studied poorly. The present study aims to investigate SCM through various screening tests like somatic cell count (SCC), electric conductivity (EC), pH, and California mastitis test (CMT) in milk samples. This study also aims to investigate possible mechanisms behind this variable expression of TLR4 by comparative SNP evaluation and transcriptional factor profile mining. So that the important genetic mutations and effects thereof can be exploited in selecting specific breeds with higher mastitis resistance and milk yield. Seventy Holstein Frisian (HF) crossbred dairy cows were selected in the present study. The animals were screened based on various diagnostic tests (SCC, pH, EC, and CMT). Blood samples (5 mL) were collected for extraction of DNA followed by amplification of PPR1 and PPR2 of the promoter region and 5'UTR of the bovine TLR4 gene using specific primers. Sanger's enzymatic DNA sequencing technique sequenced the amplified PCR products. Further, the identification of SNPs was done through various bioinformatic tools used in this study. The findings of the present study revealed that CMT, EC, pH, and SCC could be used for the early detection of subclinical mastitis. In the present study, a significant increase in the EC, pH, and SCC in milk samples of animals affected with SCM was found in comparison to the healthy animals. The present study also revealed 16 SNPs falling in TLR4 promoter and 5' untranslated region (5'UTR) sequences in mastitis-positive genotypes compared to reference genomes. The study also investigates the potential transcriptional factor program deployed in response to variable mastitis development resistance. In the present study, the allelic and genotype frequencies of all SNP variants in the three regions viz., PPR1, PPR2, and 5'UTR, were the same indicating the absence of heterozygous condition at the respective loci. The present study has wide applicability for researchers developing mastitis-resistant breeding programs and the data generated may aid in the selection of better genetic breeds. The transcription factor binding profiles can serve as concrete leads about the studies on bovine mastitis at the molecular level and may also aid global research groups working on transcription factor (TF)-based molecular pathology of mastitis.
Collapse
Affiliation(s)
- Rahil Razak Bhat
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Nadiem Nazir Bhat
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Ambreen Shabir
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, SKUAST-Kashmir, Rangil, Ganderbal, J&K, 191201, India
| | - Manzoor Ur Rahman Mir
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India.
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Ishraq Hussain
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Syed Ashaq Hussain
- Division of Veterinary Clinical Medicine, Ethics and Jurisprudence, FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Aarif Ali
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India.
| | - Kashif Shamim
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS, 38677, USA
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Sun Q, Liu X, Li X. Peptidoglycan-based immunomodulation. Appl Microbiol Biotechnol 2022; 106:981-993. [PMID: 35076738 DOI: 10.1007/s00253-022-11795-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Peptidoglycan (PGN) is a unique component in the cytoderm of prokaryotes which can be recognized by different pathogen-associated molecular patterns (PAMPs) in eukaryotes, followed by a cascade of immune responses via different pathways. This review outlined the basic structure of PGN, its immunologic functions. The immunomodulation pathways mediated by PGN were elaborated. PGN induces specific immunity through stimulating different cytokine release and Th1/Th2-dominated immune responses during humoral/cellular immune response. The nonspecific immunity activation by PGN involves immunomodulation by different pattern recognition receptors (PRRs) including PGN recognition proteins (PGRPs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), Toll-like receptors (TLRs), and C-type lectin receptors (CLRs). The sources and classification of PGRPs were summarized. In view of the stimulating activities of PGN and its monomers, the potential application of PGN as vaccine or adjuvant was prospected. This review provides systematic information on PGN functionalities from the point of immunoregulation, which might be useful in the deep exploitation of PGN.Key points. The immunological functions of PGN were illustrated. Cellular and humoral immunomodulation by PGN were outlined. The use of PGN as vaccine or adjuvant was prospected.
Collapse
Affiliation(s)
- Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiaoli Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiuliang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China. .,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
3
|
Sulabh S, Panigrahi M, Varshney R, Gupta JP, Kumar S, Verma A, Kumar A, Asaf VM, Kumar P, Bhushan B. In-vitroanalysis of Interleukin-10 expression in cell cultures of Crossbred cattle, Tharparkar cattle and Murrah buffalo in response to mastitis causing antigens derived fromStaphylococcus aureusandEscherichia coli. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1628407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sourabh Sulabh
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Rajat Varshney
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Jay P. Gupta
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Satish Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
- Department of Animal Genetics and Breeding, ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, India
| | - Ankita Verma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amod Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - V.N. Muhasin Asaf
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Pushpendra Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|