1
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Hofman B, Szyda J, Frąszczak M, Mielczarek M. Long non-coding RNA variability in porcine skeletal muscle. J Appl Genet 2024; 65:565-573. [PMID: 38539022 DOI: 10.1007/s13353-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 08/09/2024]
Abstract
Recently, numerous studies including various tissues have been carried out on long non-coding RNAs (lncRNAs), but still, its variability has not yet been fully understood. In this study, we characterised the inter-individual variability of lncRNAs in pigs, in the context of number, length and expression. Transcriptomes collected from muscle tissue belonging to six Polish Landrace boars (PL1-PL6), including half-brothers (PL1-PL3), were investigated using bioinformatics (lncRNA identification and functional analysis) and statistical (lncRNA variability) methods. The number of lncRNA ranged from 1289 to 3500 per animal, and the total number of common lncRNAs among all boars was 232. The number, length and expression of lncRNAs significantly varied between individuals, and no consistent pattern has been found between pairs of half-brothers. In detail, PL5 exhibits lower expression than the others, while PL4 has significantly higher expression than PL2-PL3 and PL5-PL6. Noteworthy, comparing the inter-individual variability of lncRNA and mRNA expression, they exhibited concordant patterns. The enrichment analysis for common lncRNA target genes determined a variety of biological processes that play fundamental roles in cell biology, and they were mostly related to whole-body homeostasis maintenance, energy and protein synthesis as well as dynamics of multiple nucleoprotein complexes. The high variability of lncRNA landscape in the porcine genome has been revealed in this study. The inter-individual differences have been found in the context of three aspects: the number, length and expression of lncRNAs, which contribute to a better understanding of its complex nature.
Collapse
Affiliation(s)
- Bartłomiej Hofman
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland.
| |
Collapse
|
3
|
Wu X, Du X, Pian H, Yu D. Effect of Curcumin on Hepatic mRNA and lncRNA Co-Expression in Heat-Stressed Laying Hens. Int J Mol Sci 2024; 25:5393. [PMID: 38791430 PMCID: PMC11121607 DOI: 10.3390/ijms25105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is an important factor affecting poultry production; birds have a range of inflammatory reactions under high-temperature environments. Curcumin has anti-inflammatory and antioxidant effects. The purpose of this experiment was to investigate the effect of dietary curcumin supplementation on the liver transcriptome of laying hens under heat stress conditions. In the animal experiment, a total of 240 Hy-Line brown hens aged 280 days were divided randomly into four different experimental diets with four replicates, and each replicate consisted of 15 hens during a 42-D experiment. The ambient temperature was adjusted to 34 ± 2 °C for 8 h per day, transiting to a range of 22 °C to 28 °C for the remaining 16 h. In the previous study of our lab, it was found that supplemental 150 mg/kg curcumin can improve production performance, antioxidant enzyme activity, and immune function in laying hens under heat stress. To further investigate the regulatory mechanism of curcumin on heat stress-related genes, in total, six samples of three liver tissues from each of 0 mg/kg and 150 mg/kg curcumin test groups were collected for RNA-seq analysis. In the transcriptome analysis, we reported for the first time that the genes related to heat stress of mRNA, such as HSPA8, HSPH1, HSPA2, and DNAJA4, were co-expressed with lncRNA such as XLOC010450, XLOC037987, XLOC053511, XLOC061207, and XLOC100318, and all of these genes are shown to be down-regulated. These findings provide a scientific basis for the possible benefits of dietary curcumin addition in heat-stressed laying hens.
Collapse
Affiliation(s)
- Xinyue Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Xubin Du
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China;
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| |
Collapse
|
4
|
Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel) 2023; 13:1846. [PMID: 37889768 PMCID: PMC10252019 DOI: 10.3390/ani13111846] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Global warming is a significant threat to the sustainability and profitability of the dairy sector, not only in tropical or subtropical regions but also in temperate zones where extreme summer temperatures have become a new and challenging reality. Prolonged exposure of dairy cows to high temperatures compromises animal welfare, increases morbidity, and suppresses fertility, resulting in devastating economic losses for farmers. To counteract the deleterious effects of heat stress, cattl e employ various adaptive thermoregulatory mechanisms including molecular, endocrine, physiological, and behavioral responses. These adaptations involve the immediate secretion of heat shock proteins and cortisol, followed by a complex network of disrupted secretion of metabolic and reproductive hormones such as prolactin, ghrelin, ovarian steroid, and pituitary gonadotrophins. While the strategic heat stress mitigation measures can restore milk production through modifications of the microclimate and nutritional interventions, the summer fertility records remain at low levels compared to those of the thermoneutral periods of the year. This is because sustainment of high fertility is a multifaceted process that requires appropriate energy balance, undisrupted mode of various hormones secretion to sustain the maturation and fertilizing competence of the oocyte, the normal development of the early embryo and unhampered maternal-embryo crosstalk. In this review, we summarize the major molecular and endocrine responses to elevated temperatures in dairy cows, as well as the impacts on maturing oocytes and early embryos, and discuss the consequences that heat stress brings about in dairy cattle fertility.
Collapse
Affiliation(s)
- Eleni Dovolou
- Laboratory of Reproduction, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Themistoklis Giannoulis
- Laboratory of Genetics, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
| | - Ioannis Nanas
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Georgios S. Amiridis
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
5
|
Preliminary Transcriptome Analysis of Long Noncoding RNA in Hypothalamic-Pituitary-Mammary Gland Axis of Dairy Cows under Heat Stress. Biomolecules 2023; 13:biom13020390. [PMID: 36830759 PMCID: PMC9953101 DOI: 10.3390/biom13020390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Heat stress (HS) is directly correlated to mammary gland dysfunction in dairy cows, especially in summer. The hypothalamic-pituitary-mammary gland axis (HPM axis) plays an important role in the regulation of stress response and lactation physiology in heat-stressed dairy cows. The aim of this study was to explore the lncRNA profile, and the competitive endogenous RNA (ceRNA) regulatory network in hypothalamus, pituitary, and mammary gland tissues of heat-stressed and normal dairy cows. We performed RNA sequencing (RNA-seq) to identify differentially expressed (DE) lncRNAs, and the ceRNA regulatory network was established in HPM-axis-related tissues. Our results showed that a total of 13, 702 and 202 DE lncRNAs were identified in hypothalamus, pituitary, and mammary glands, respectively. Of lncRNAs, 8, 209 and 45 were up-regulated, and 5, 493 and 157 lncRNAs were down-regulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that DE lncRNAs target genes that might play a role in hormone synthesis, secretion and action, apoptosis, mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) signaling pathway. Moreover, the ceRNA regulatory network associated with the MAPK signaling pathway in HPM-axis-related tissues contains 3286 lncRNA-mRNA pairs. Furthermore, the ceRNA regulatory network associated with apoptosis, prolactin, AMPK, and mTOR signaling pathway in the mammary gland contains 772 lncRNA-mRNA pairs. Thus, some lncRNAs may be involved in the regulation of stress response and the physiological process of lactation. The changes in lncRNA expression profiles and ceRNAs (lncRNA-miRNA-mRNA) in HPM-axis-related tissues are the key to affect the stress response and lactation physiology of dairy cows under HS, which provide a theoretical basis for the molecular mechanism in the stress response of HPM-axis-related tissues in dairy cows under HS.
Collapse
|
6
|
Niinuma SA, Lubbad L, Lubbad W, Moin ASM, Butler AE. The Role of Heat Shock Proteins in the Pathogenesis of Polycystic Ovarian Syndrome: A Review of the Literature. Int J Mol Sci 2023; 24:ijms24031838. [PMID: 36768170 PMCID: PMC9915177 DOI: 10.3390/ijms24031838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and post-menopausal women. PCOS is a multifactorial heterogeneous disorder associated with a variety of etiologies, outcomes, and clinical manifestations. However, the pathophysiology of PCOS is still unclear. Heat shock proteins (HSPs) have recently been investigated for their role in the pathogenesis of PCOS. HSPs are a class of proteins that act as molecular chaperones and maintain cellular proteostasis. More recently, their actions beyond that of molecular chaperones have highlighted their pathogenic role in several diseases. In PCOS, different HSP family members show abnormal expression that affects the proliferation and apoptotic rates of ovarian cells as well as immunological processes. HSP dysregulation in the ovaries of PCOS subjects leads to a proliferation/apoptosis imbalance that mechanistically impacts follicle stage development, resulting in polycystic ovaries. Moreover, HSPs may play a role in the pathogenesis of PCOS-associated conditions. Recent studies on HSP activity during therapeutic interventions for PCOS suggest that modulating HSP activity may lead to novel treatment strategies. In this review, we summarize what is currently known regarding the role of HSPs in the pathogenesis of PCOS and their potential role in the treatment of PCOS, and we outline areas for future research.
Collapse
Affiliation(s)
- Sara Anjum Niinuma
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Laila Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Walaa Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
- Correspondence: or ; Tel.: +973-66760313
| |
Collapse
|
7
|
Qi Y, Zhang Y, Zhang J, Wang J, Li Q. The alteration of N6-methyladenosine (m6A) modification at the transcriptome-wide level in response of heat stress in bovine mammary epithelial cells. BMC Genomics 2022; 23:829. [PMCID: PMC9749357 DOI: 10.1186/s12864-022-09067-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Heat stress has a substantial negative economic impact on the dairy industry. N6-methyladenosine (m6A) is the most common internal RNA modification in eukaryotes and plays a key role in regulating heat stress response in animals. In dairy cows, however, this modification remains largely unexplored. Therefore, we examined the effects of heat stress on the m6A modification and gene expression in bovine mammary epithelial cells to elucidate the mechanism of heat stress response. In this study, Mammary alveolar cells-large T antigen (MAC-T) cells were incubated at 37 °C (non-heat stress group, NH) and 40 °C (heat stress group, H) for 2 hours, respectively. HSP70, HSF1, BAX and CASP3 were up regulated in H group compared with those in the NH group.
Results
Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted to identify m6A peaks and to produce gene expression data of MAC-T cells in the H and NH groups. In total, we identified 17,927 m6A peaks within 9355 genes in the H group, and 18,974 peaks within 9660 genes in the NH groups using MeRIP-seq. Compared with the NH group, 3005 significantly differentially enriched m6A peaks were identified, among which 1131 were up-regulated and 1874 were down-regulated. In addition, 1502 significantly differentially expressed genes were identified using RNA-seq, among which 796 were up-regulated and 706 were down-regulated in the H group compared to the NH group. Furthermore, 199 differentially expressed and synchronously differentially methylated genes were identified by conjoint analysis of the MeRIP-seq and RNA-seq data, which were subsequently divided into four groups: 47 hyper-up, 53 hyper-down, 59 hypo-up and 40 hypo-down genes. In addition, GO enrichment and KEGG analyses were used to analyzed the potential functions of the genes in each section.
Conclusion
The comparisons of m6A modification patterns and conjoint analyses of m6A modification and gene expression profiles suggest that m6A modification plays a critical role in the heat stress response by regulating gene expression.
Collapse
|
8
|
Stamperna K, Giannoulis T, Cañon-Beltrán K, Dovolou E, Kalemkeridou M, Nanas I, Rizos D, Moutou KA, Mamuris Z, Amiridis GS. Oviductal epithelial cells transcriptome and extracellular vesicles characterization during thermoneutral and heat stress conditions in dairy cows. Theriogenology 2022; 187:152-163. [DOI: 10.1016/j.theriogenology.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
|
9
|
Comparative Transcriptomic Analysis of Hu Sheep Pituitary Gland Prolificacy at the Follicular and Luteal Phases. Genes (Basel) 2022; 13:genes13030440. [PMID: 35327994 PMCID: PMC8949571 DOI: 10.3390/genes13030440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The pituitary gland directly regulates the reproduction of domestic animals. Research has increasingly focused on the potential regulatory mechanism of non-coding RNA in pituitary development. Little is known about the differential expression pattern of lncRNAs in Hu sheep, a famous sheep breed with high fecundity, and its role in the pituitary gland between the follicular phase and luteal phase. Herein, to identify the transcriptomic differences of the sheep pituitary gland during the estrus cycle, RNA sequencing (RNA-Seq) was performed. The results showed that 3529 lncRNAs and 16,651 mRNAs were identified in the pituitary gland. Among of them, 144 differentially expressed (DE) lncRNA transcripts and 557 DE mRNA transcripts were screened in the follicular and luteal phases. Moreover, GO and KEGG analyses demonstrated that 39 downregulated and 22 upregulated genes interacted with pituitary functions and reproduction. Lastly, the interaction of the candidate lncRNA XR_001039544.4 and its targeted gene LHB were validated in sheep pituitary cells in vitro. LncRNA XR_001039544.4 and LHB showed high expression levels in the luteal phase in Hu sheep. LncRNA XR_001039544.4 is mainly located in the cytoplasm, as determined by FISH analysis, indicating that XR_001039544.4 might act as competing endogenous RNAs for miRNAs to regulate LHB. LncRNA XR_001039544.4 knockdown significantly inhibited LH secretion and cell proliferation. LncRNA XR_001039544.4 may regulate the secretion of LH in the luteal-phase pituitary gland via affecting cell proliferation. Taken together, these findings provided genome-wide lncRNA- and mRNA-expression profiles for the sheep pituitary gland between the follicular and luteal phases, thereby contributing to the elucidation of the molecular mechanisms of pituitary function.
Collapse
|
10
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
11
|
Silpa MV, König S, Sejian V, Malik PK, Nair MRR, Fonseca VFC, Maia ASC, Bhatta R. Climate-Resilient Dairy Cattle Production: Applications of Genomic Tools and Statistical Models. Front Vet Sci 2021; 8:625189. [PMID: 33996959 PMCID: PMC8117237 DOI: 10.3389/fvets.2021.625189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 01/02/2023] Open
Abstract
The current changing climate trend poses a threat to the productive efficacy and welfare of livestock across the globe. This review is an attempt to synthesize information pertaining to the applications of various genomic tools and statistical models that are available to identify climate-resilient dairy cows. The different functional and economical traits which govern milk production play a significant role in determining the cost of milk production. Thus, identification of these traits may revolutionize the breeding programs to develop climate-resilient dairy cattle. Moreover, the genotype–environment interaction also influences the performance of dairy cattle especially during a challenging situation. The recent advancement in molecular biology has led to the development of a few biotechnological tools and statistical models like next-generation sequencing (NGS), microarray technology, whole transcriptome analysis, and genome-wide association studies (GWAS) which can be used to quantify the molecular mechanisms which govern the climate resilience capacity of dairy cows. Among these, the most preferred option for researchers around the globe was GWAS as this approach jointly takes into account all the genotype, phenotype, and pedigree information of farm animals. Furthermore, selection signatures can also help to demarcate functionally important regions in the genome which can be used to detect potential loci and candidate genes that have undergone positive selection in complex milk production traits of dairy cattle. These identified biomarkers can be incorporated in the existing breeding policies using genomic selection to develop climate-resilient dairy cattle.
Collapse
Affiliation(s)
- Mullakkalparambil Velayudhan Silpa
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, Gießen, Germany.,Center for Climate Resilient Animal Adaptation Studies, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Veerasamy Sejian
- Center for Climate Resilient Animal Adaptation Studies, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Pradeep Kumar Malik
- Center for Climate Resilient Animal Adaptation Studies, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Mini Ravi Reshma Nair
- Center for Climate Resilient Animal Adaptation Studies, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Vinicius F C Fonseca
- Innovation Group of Thermal Comfort and Animal Welfare (INOBIO-MANERA), Animal Science Department, Universidade Federal da Paraíba, Areia, Brazil.,Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Alex Sandro Campos Maia
- Innovation Group of Thermal Comfort and Animal Welfare (INOBIO-MANERA), Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), São Paulo, Brazil
| | - Raghavendra Bhatta
- Center for Climate Resilient Animal Adaptation Studies, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bangalore, India
| |
Collapse
|
12
|
Dou J, Schenkel F, Hu L, Khan A, Khan MZ, Yu Y, Wang Y, Wang Y. Genome-wide identification and functional prediction of long non-coding RNAs in Sprague-Dawley rats during heat stress. BMC Genomics 2021; 22:122. [PMID: 33596828 PMCID: PMC7891137 DOI: 10.1186/s12864-021-07421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Background Heat stress (HS) is a major stress event in the life of an animal, with detrimental upshots in production and health. Long-non-coding RNAs (lncRNAs) play an important role in many biological processes by transcriptional regulation. However, no research has been reported on the characterization and functionality of lncRNAs in heat-stressed rats. Results We studied expression levels of lncRNAs in rats during HS, using strand-specific RNA sequencing. Six rats, three in each of Control (22 ± 1 °C) and H120 (42 °C for 120 min) experimental groups, were used to screen for lncRNAs in their liver and adrenal glands. Totally, 4498 and 7627 putative lncRNAs were identified in liver and adrenal glands of the Control and H120 groups, respectively. The majority of lncRNAs were relatively shorter and contained fewer exons than protein-coding transcripts. In total, 482 (174 up-regulated and 308 down-regulated) and 271 (126 up-regulated and 145 down-regulated) differentially-expressed lncRNAs (DElncRNAs, P < 0.05) were identified in the liver and adrenal glands of the Control and H120 groups, respectively. Furthermore, 1274, 121, and 73 target differentially-expressed genes (DEGs) in the liver were predicted to interact with DElncRNAs based on trans−/cis- and sequence similarity regulatory modes. Functional annotation analyses indicated that these DEGs were mostly significantly enriched in insulin signalling, myeloid leukaemia, and glucagon signalling pathways. Similarly, 437, 73 and 41 target DEGs in the adrenal glands were mostly significantly enriched in the cell cycle (trans-prediction) and lysosome pathways (cis-prediction). The DElncRNAs interacting with DEGs that encode heat shock proteins (HSPs) may play an important role in HS response, which include Hsf4, Dnaja1, Dnajb4, Hsph1 and Hspb1 in the liver, and Dnajb13 and Hspb8 in the adrenal glands. The strand-specific RNA sequencing findings were also further verified through RT-qPCR. Conclusions This study is the first to provide a detailed characterization and functional analysis of expression levels of lncRNAs in liver and adrenal glands of heat-stressed rats, which provides basis for further studies on the biological functions of lncRNAs under heat stress in rats and other mammalian species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07421-8.
Collapse
Affiliation(s)
- Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Flavio Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Muhammad Zahoor Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Qi Y, Zhang L, Guo Y, Wang J, Chu M, Zhang Y, Guo J, Li Q. Genome-wide identification and functional prediction of circular RNAs in response to heat stress in Chinese Holstein cows. Anim Biotechnol 2021; 33:1170-1180. [PMID: 33586615 DOI: 10.1080/10495398.2021.1879825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Heat stress (HS) leads to substantial economic loss of dairy industry each year. The negative effect of HS in dairy cows is becoming one of the more urgent issue due to accelerating side-effects of global warming. Various genes are involved in HS response but the information about the role of noncoding RNAs, especially circular RNAs (circRNAs) is largely unknown. In our study, we aimed to investigate the different expression profile of circRNAs between HS and Non-heat-stressed condition (NC) of Chinese Holstein cow's mammary gland. CircRNAs were identified using RNA sequencing and bioinformatics analysis. In total, 37405 circRNAs were detected and 95 were differentially expressed (DE), including 15 downregulated and 80 upregulated circRNAs in HS group compared to NC. Eight circRNAs were randomly selected to verify the RNA sequencing result. Further, Sanger sequencing validated the backsplicing site of the eight circRNAs. Moreover, results obtained from the Quantitative real time PCR (qRT-PCR) showed consistent expression trend with that of RNA sequencing. GO annotation and KEGG analysis suggested that these DE circRNAs probably involved in the energy metabolic regulation. Furthermore, we constructed ceRNA network and the result indicated that these DE circRNAs could regulate lactation through IGF1 and PRL signaling pathway.
Collapse
Affiliation(s)
- Ying Qi
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Lin Zhang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Yuemei Guo
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Mingxing Chu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yiming Zhang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Junfei Guo
- Clinical Laboratory Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Qiuling Li
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| |
Collapse
|
14
|
Jia X, He Y, Chen SY, Wang J, Hu S, Lai SJ. Genome-wide identification and characterisation of long non-coding RNAs in two Chinese cattle breeds. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1735266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Cui X, Zhang S, Zhang Q, Guo X, Wu C, Yao M, Sun D. Comprehensive MicroRNA Expression Profile of the Mammary Gland in Lactating Dairy Cows With Extremely Different Milk Protein and Fat Percentages. Front Genet 2020; 11:548268. [PMID: 33343617 PMCID: PMC7744623 DOI: 10.3389/fgene.2020.548268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
A total of 31 differentially expressed genes in the mammary glands were identified in our previous study using RNA sequencing (RNA-Seq), for lactating cows with extremely high and low milk protein and fat percentages. To determine the regulation of milk composition traits, we herein investigated the expression profiles of microRNA (miRNA) using small RNA sequencing based on the same samples as in the previous RNA-Seq experiment. A total of 497 known miRNAs (miRBase, release 22.1) and 49 novel miRNAs among the reads were identified. Among these miRNAs, 71 were found differentially expressed between the high and low groups (p < 0.05, q < 0.05). Furthermore, 21 of the differentially expressed genes reported in our previous RNA-Seq study were predicted as target genes for some of the 71 miRNAs. Gene ontology and KEGG pathway analyses showed that these targets were enriched for functions such as metabolism of protein and fat, and development of mammary gland, which indicating the critical role of these miRNAs in regulating the formation of milk protein and fat. With dual luciferase report assay, we further validated the regulatory role of 7 differentially expressed miRNAs through interaction with the specific sequences in 3'UTR of the targets. In conclusion, the current study investigated the complexity of the mammary gland transcriptome in dairy cattle using small RNA-seq. Comprehensive analysis of differential miRNAs expression and the data from previous study RNA-seq provided the opportunity to identify the key candidate genes for milk composition traits.
Collapse
Affiliation(s)
- Xiaogang Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Guo
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Mingze Yao
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Hao Z, Luo Y, Wang J, Hu J, Liu X, Li S, Jin X, Ke N, Zhao M, Hu L, Lu Y, Wu X, Qiao L. RNA-Seq Reveals the Expression Profiles of Long Non-Coding RNAs in Lactating Mammary Gland from Two Sheep Breeds with Divergent Milk Phenotype. Animals (Basel) 2020; 10:ani10091565. [PMID: 32899158 PMCID: PMC7552154 DOI: 10.3390/ani10091565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) play a key role in regulating the expression level of mRNAs. The expression profiles of ovine mammary gland were investigated in two sheep breeds with divergent milk phenotype using RNA-Seq. A total of 1894 lncRNAs were found to be expressed and 68 of these were differentially expressed between the two breeds. Some important Gene Ontogeny (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were related to lactation and mammary gland morphogenesis were found for the target genes of differentially expressed lncRNAs. This study can improve our understanding of the functions of lncRNAs in the regulation of lactation, milk yield, and milk components in sheep. Abstract Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.
Collapse
|
17
|
Alexandre PA, Reverter A, Berezin RB, Porto-Neto LR, Ribeiro G, Santana MHA, Ferraz JBS, Fukumasu H. Exploring the Regulatory Potential of Long Non-Coding RNA in Feed Efficiency of Indicine Cattle. Genes (Basel) 2020; 11:genes11090997. [PMID: 32854445 PMCID: PMC7565090 DOI: 10.3390/genes11090997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) can regulate several aspects of gene expression, being associated with complex phenotypes in humans and livestock species. In taurine beef cattle, recent evidence points to the involvement of lncRNA in feed efficiency (FE), a proxy for increased productivity and sustainability. Here, we hypothesized specific regulatory roles of lncRNA in FE of indicine cattle. Using RNA-Seq data from the liver, muscle, hypothalamus, pituitary gland and adrenal gland from Nellore bulls with divergent FE, we submitted new transcripts to a series of filters to confidently predict lncRNA. Then, we identified lncRNA that were differentially expressed (DE) and/or key regulators of FE. Finally, we explored lncRNA genomic location and interactions with miRNA and mRNA to infer potential function. We were able to identify 126 relevant lncRNA for FE in Bos indicus, some with high homology to previously identified lncRNA in Bos taurus and some possible specific regulators of FE in indicine cattle. Moreover, lncRNA identified here were linked to previously described mechanisms related to FE in hypothalamus-pituitary-adrenal axis and are expected to help elucidate this complex phenotype. This study contributes to expanding the catalogue of lncRNA, particularly in indicine cattle, and identifies candidates for further studies in animal selection and management.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
- Correspondence: ; Tel.: +61-7-32142453
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
| | - Roberta B. Berezin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
| | - Gabriela Ribeiro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Miguel H. A. Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil;
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| |
Collapse
|
18
|
Du K, Ren AY, Cai MC, Wang GZ, Jia XB, Hu SQ, Wang J, Chen SY, Lai SJ. Identification of long non-coding RNAs in the early growth stage of Holstein mammary gland. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1747557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
- K. Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - A.-Y. Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - M.-C. Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - G.-Z. Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - X.-B. Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - S.-Q. Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - J. Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - S.-Y. Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - S.-J. Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|