1
|
Malheiros JM, Reolon HG, Bosquini BG, Baldi F, Lourenco D, Fragomeni BO, Silva RMO, Paz CCP, Stafuzza NB. Identification of biological pathways and putative candidate genes for residual feed intake in a tropically adapted beef cattle breed by plasma proteome analysis. J Proteomics 2025; 312:105361. [PMID: 39638144 DOI: 10.1016/j.jprot.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This study identified potential biomarkers for feed efficiency by blood plasma proteome analysis of a tropically adapted beef cattle breed. Two experimental groups were selected based on residual feed intake (RFI). The proteome was investigated by LC-MS/MS in a data-dependent acquisition mode. After quality control, 123 differentially abundant proteins (DAPs) were identified between the two experimental groups. Among DAPs with the highest absolute log-fold change values, the PRDM2, KRT5, UGGT1, DENND5B, B2M, SLC44A2, SLC7A2, PTPRC, and FETUB were highlighted as potential biomarkers because of their functions that may contribute to RFI. Furthermore, functional enrichment analysis revealed several biological processes, molecular functions and pathways that contributes to RFI, such as cell signaling, cellular responses to stimuli, immune system, calcium, hormones, metabolism and functions of proteins, lipids and carbohydrates. Protein-protein interaction analysis identified 32 and 11 DAPs as important nodes based on their interactions in the high- and low-RFI groups, respectively. This study represents the first comprehensive profiling of the blood plasma proteome of a tropically adapted beef cattle breed and provides valuable insights into the potential roles of these DAPs in key biological processes and pathways, contributing to our understanding of the mechanisms underlying feed efficiency in tropically adapted beef cattle. SIGNIFICANCE: LC-MS/MS analysis was performed to investigate changes in the blood plasma proteome associated with residual feed intake (RFI) in a tropically adapted beef cattle breed (Bos taurus taurus). Some putative biomarkers were identified to distinguish the high-RFI to low-RFI animals, based on their log-fold change value or on their protein-protein interaction network, which provide helpful sources in developing novel selection strategies for breeding programs. Our findings also revealed valuable insights into the metabolic pathways and biological processes that contribute to RFI in beef cattle, such as those closely linked to cell signaling, cellular responses to stimuli, immune system, calcium, hormones, metabolism and functions of proteins, lipids and carbohydrates.
Collapse
Affiliation(s)
- Jessica M Malheiros
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Henrique G Reolon
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Bruna G Bosquini
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900 Jaboticabal, SP, Brazil
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, GA, USA.
| | - Breno O Fragomeni
- Department of Animal Science, University of Connecticut, 06269 Storrs, CT, USA.
| | | | - Claudia C P Paz
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil
| | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil.
| |
Collapse
|
2
|
Wang J, Lin H, Wang Q, Wu Y, Zhang C. 4D DIA proteomic analysis of gender and age influences on meat quality and flavor in Hetian white sheep. Food Chem 2025; 464:141851. [PMID: 39504902 DOI: 10.1016/j.foodchem.2024.141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
To investigate the impact of age and gender on mutton flavor and quality, we analyzed mutton from 12-month-old and 6-month-old rams and ewes. The results indicated that 12 months Hetian white sheep exhibited higher levels of amino acids, protein, free fatty acids, and reducing sugars compared to 6-months. Additionally, amino acid, protein, and reducing sugar levels were higher in ewes than 12 months rams. Proteomic analysis revealed that proteins related to fatty acid metabolism, intramuscular fat (IMF), and mitochondrial function were more abundant in ram. The upregulation proteins involved in amino acid metabolism in ewes highlights its richer flavor profile compared to ram. Proteins associated with muscle development and mitochondrial activity were more highly expressed in the 12-month-old samples compared to those from 6-month-old sheep. ECI1, highly expressed in rams, is linked to IMF content. We hypothesize that ECI1 may serve as a potential protein marker for mutton quality.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang academy of animal science, Urumqi 830052, China
| | - Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Quanfeng Wang
- Xinjiang Jinken Aoqun Agriculture and Animal Husbandry Technology Co., Ltd., 848301,China
| | - Yun Wu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
3
|
Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals (Basel) 2022; 12:ani12212976. [PMID: 36359100 PMCID: PMC9654910 DOI: 10.3390/ani12212976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary A bibliometric analysis was carried out to know the evolution of research on genes associated with meat tenderness, of interest for the development of selection programs. Since 1993, studies have been limited to a few researchers in high-income countries due to the costs associated with the techniques. The main findings showed that the scientific production had a discontinuous growth because science experienced a significant change since approximately 2010. Marker-assisted selection was widely used, evaluating mainly CAPN (calpain) and CAST (calpastatin) genes for their contribution to meat tenderness, especially in cattle. However, the effects are small; therefore, genomic selection was implemented by genotyping thousands of single nucleotide polymorphisms (SNPs) for further explanation of genetic variation. The results shown are important for scholars to identify emerging methodologies and gaps in the literature and to know who the prolific authors and institutions in the field for possible collaborations, etc., are. Abstract Tenderness is one of the main characteristics of meat because it determines its price and acceptability. This is the first bibliometric study on the trend of research on the role of genes in meat tenderness. A total of 175 original and English-language articles published up to 2021 were retrieved from Scopus. The bibliometric analysis was carried out with VOSviewer (version 1.6.18, Eck and Waltman, Leiden, Netherlands) and complemented with the Analyze search results service from Scopus. Erroneous and duplicate data were eliminated, and incomplete information was added to standardize the results. Scientific production was evaluated by means of quantity, quality and structure indicators. As a first glance, 8.816% of authors have published more than 50% of papers mainly related to genes encoding the calpain (CAPN)-calpastatin (CAST) system and single nucleotide polymorphisms (SNPs). Among other findings, a strong link was found between the contribution of the main countries (led by the United States with) and their institutions (led by the USDA Agricultural Research Service with) to their gross domestic product. Most studies on the topic are published in the Journal of Animal Science, and other journals with high impact according to the number of citations and different metrics. Finally, when evaluating the most cited articles, the occurrence and association of the main keywords, it was confirmed that research is focused on the role of CAPN and CAST genes and of SNPs in beef tenderness. The change in science was emphasized; although marker-assisted selection is still used, genes have an infinitesimal effect on complex traits. Therefore, since about 2010, new research groups adopted genomic selection to evaluate dense panels of SNPs and better explain genetic variation in meat tenderness.
Collapse
|
4
|
Carcass and meat quality of Nellore cattle (Bos taurus indicus) belonging to the breeding programs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
6
|
Yan XM, Zhang Z, Meng Y, Li HB, Gao L, Luo D, Jiang H, Gao Y, Yuan B, Zhang JB. Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle. PeerJ 2020; 8:e8646. [PMID: 32211228 PMCID: PMC7081781 DOI: 10.7717/peerj.8646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Xinjiang brown cattle have better meat quality than Kazakh cattle. Circular RNAs (circRNAs) are a type of RNA that can participate in the regulation of gene transcription. Whether circRNAs are differentially expressed in the longissimus dorsi between these two types of cattle and whether differentially expressed circRNAs regulate muscle formation and differentiation are still unknown. In this study, we established two RNA-seq libraries, each of which consisted of three samples. A total of 5,177 circRNAs were identified in longissimus dorsi samples from Kazakh cattle and Xinjiang brown cattle using the Illumina platform, 46 of which were differentially expressed. Fifty-five Gene Ontology terms were significantly enriched, and 12 Kyoto Encyclopedia of Genes and Genomes pathways were identified for the differentially expressed genes. Muscle biological processes were associated with the origin genes of the differentially expressed circRNAs. In addition, we randomly selected six overexpressed circRNAs and compared their levels in longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle using RT-qPCR. Furthermore, we predicted 66 interactions among 65 circRNAs and 14 miRNAs using miRanda and established a coexpression network. A few microRNAs known for their involvement in myoblast regulation, such as miR-133b and miR-664a, were identified in this network. Notably, bta_circ_03789_1 and bta_circ_05453_1 are potential miRNA sponges that may regulate insulin-like growth factor 1 receptor expression. These findings provide an important reference for prospective investigations of the role of circRNA in longissimus muscle growth and development. This study provides a theoretical basis for targeting circRNAs to improve beef quality and taste.
Collapse
Affiliation(s)
- Xiang-Min Yan
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China.,Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Ürümqi, Xinjiang, China
| | - Zhe Zhang
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Yu Meng
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Hong-Bo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Ürümqi, Xinjiang, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, Xinjiang, China
| | - Dan Luo
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| |
Collapse
|