1
|
Liu T, Rahim F, Yang ML, Uddin M, Ye JW, Ali I, Raza Y, Mansoor A, Shoaib M, Hussain M, Khan I, Shah B, Khan A, Nisar A, Ma H, Xu B, Shah W, Shi QH. Novel homozygous SPAG17 variants cause human male infertility through multiple morphological abnormalities of spermatozoal flagella related to axonemal microtubule doublets. Asian J Androl 2024:00129336-990000000-00269. [PMID: 39686771 DOI: 10.4103/aja202496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/05/2024] [Indexed: 12/18/2024] Open
Abstract
ABSTRACT Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella (MMAF). Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement. Mammalian sperm-associated antigen 17 (SPAG17) encodes a conserved axonemal protein of cilia and flagella, forming part of the C1a projection of the central apparatus, with functions related to ciliary/flagellar motility, skeletal growth, and male fertility. This study investigated two novel homozygous SPAG17 mutations (M1: NM_206996.2, c.829+1G>T, p.Asp212_Glu276del; and M2: c.2120del, p.Leu707*) identified in four infertile patients from two consanguineous Pakistani families. These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa. Quantitative real-time polymerase chain reaction (PCR) of patients' spermatozoa also revealed a significant decrease in SPAG17 mRNA expression, and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella. However, no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients. Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls. Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17 (SPATA17), a component of the C1a projection, and sperm-associated antigen 6 (SPAG6), a marker of the spring layer, revealed disrupted expression of both proteins in the patients' spermatozoa. Altogether, these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme, expanding the phenotypic spectrum of SPAG17 mutations in humans.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Li L, Quan J, Liu H, Yu H, Chen H, Xia C, Zhao S, Gao C. Identification of the genetic characteristics of copy number variations in experimental specific pathogen-free ducks using whole-genome resequencing. BMC Genomics 2024; 25:17. [PMID: 38166615 PMCID: PMC10759622 DOI: 10.1186/s12864-023-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and selection signatures. RESULTS We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures specific to JD, SM, and SX, respectively. CONCLUSIONS In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of experimental animal genetic resources.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
- College of Animal Science & Technology, Ningxia University, Yinchuan, 750021, P.R. China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China.
| | - Hongyi Liu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Haibo Yu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Changyou Xia
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China.
| |
Collapse
|
3
|
Zhang K, Mi F, Li X, Wang Z, Jiang F, Song E, Guo P, Lan X. Detection of genetic variation in bovine CRY1 gene and its associations with carcass traits. Anim Biotechnol 2023; 34:3387-3394. [PMID: 36448652 DOI: 10.1080/10495398.2022.2149547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The biological clock (also known as circadian clock) is closely related to growth and development, metabolism, and diseases in animals. As a part of the circadian clock, the cryptochrome circadian regulator 1 (CRY1) gene is involved in the regulation of biological processes such as osteogenesis, energy metabolism and cell proliferation, however, few studies have been reported on the relationship between this gene and animal carcass traits. Herein, a total of four insertion/deletion (InDel) loci within the CRY1 gene were detected in Shandong Black Cattle Genetic Resource (SDBCGR) population (n = 433). Among them, the P1-6-bp-del locus was polymorphic in population of interest. Moreover, the P1-6-bp-del locus showed two genotypes, with a higher insertion/insertion (II) genotype frequency (0.751) than insertion/deletion (ID) genotype frequency (0.249). Correlation analysis showed that the P1-6-bp-del locus polymorphisms were significantly associated with twenty carcass traits (e.g., slaughter weight, limb weight, and belly meat weight). Individuals with II genotype were significantly better than those with ID genotype for eighteen carcass traits. Therefore, the P1-6-bp-del locus of the CRY1 gene can be used as a molecular marker for beef cattle breeding.
Collapse
Affiliation(s)
- Kejing Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fang Mi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuelan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Enliang Song
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Guo
- College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Wijayanti D, Bai Y, Hanif Q, Chen H, Zhu H, Qu L, Guo Z, Lan X. Goat CLSTN2 gene: tissue expression profile, genetic variation, and its associations with litter size. Anim Biotechnol 2023; 34:2674-2683. [PMID: 35980330 DOI: 10.1080/10495398.2022.2111311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Calsyntenin-2 (CLSTN2) is involved in cell proliferation, differentiation, cell death, tumorigenesis, and follicular expression. Although CLSTN2 has been identified as a potential candidate gene for sheep prolificacy, no studies have been done on its effect on goat prolificacy. The purpose of this study was to identify mRNA expression and genetic variation within goat CLSTN2, and its association with prolificacy. Herein, we uncovered significant differences in mRNA levels of the CLSTN2 gene in different tissues in female goats (p < 0.01), including ovary tissue. Nine putative indels were designed to investigate their correlation to litter size, but only one 16-bp deletion was discovered in female Shaanbei white cashmere goats (n = 902). We discovered that a 16-bp deletion within the CLSTN2 gene was significantly correlated with first-born litter size (p = 0.0001). As shown by the chi-squared test, the genotypic II of single-lambs and multi-lambs was dramatically higher than with genotype ID (p = 0.005). Our findings suggest that indel within the CLSTN2 gene is a candidate gene affecting prolificacy in goats and may be used for Marker Assisted Selection (MAS) in goats.
Collapse
Affiliation(s)
- Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, Indonesia
| | - Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, PR China and Life Science Research Center, Yulin University, Yulin, Shaanxi, PR China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, PR China and Life Science Research Center, Yulin University, Yulin, Shaanxi, PR China
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Institute of Animal Husbandry and Veterinary Science of Bijie City, Guizhou, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Goat MyoD1: mRNA expression, InDel and CNV detection and their associations with growth traits. Gene 2023; 866:147348. [PMID: 36898510 DOI: 10.1016/j.gene.2023.147348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
The Myogenic differentiation 1 (MyoD1) gene is a crucial regulator of muscle formation and differentiation. However, there are few studies on the mRNA expression pattern of the goat MyoD1 gene and its effect on goat growth and development. To address this, we investigated the mRNA expression of the MyoD1 gene in several tissues of fetal and adult goats, containing heart, liver, spleen, lung, kidney and skeletal muscle. The results focused on the expression of the MyoD1 gene in skeletal muscle of fetal goats was much higher than adult goats, suggesting its important role in skeletal muscle formation and development. Following, a total of 619 Shaanbei White Cashmere goats (SBWCs) were used to monitor the InDel (Insertion/Deletion) and CNV (Copy Number Variation) variations of the MyoD1 gene. Three InDel loci were identified, and there was no significant correlation with goat growth traits. Furthermore, a CNV locus containing the MyoD1 gene exon with three types (Loss type, Normal type, Gain type) were identified. The association analysis results showed that the CNV locus was significantly associated with body weight, height at hip cross, heart girth and hip width in SBWCs (P < 0.05). Meanwhile, the Gain type of CNV exhibited the best growth traits and good consistency among three types in goats, suggesting its potential as a DNA marker for marker-assisted breeding of goats. Overall, our study provided a scientific basis for breeding goats with better growth and development traits.
Collapse
|
6
|
Effects of Genetic Variation of the Sorting Nexin 29 ( SNX29) Gene on Growth Traits of Xiangdong Black Goat. Animals (Basel) 2022; 12:ani12243461. [PMID: 36552381 PMCID: PMC9774745 DOI: 10.3390/ani12243461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Previous studies have found that the copy number variation (CNV) and insertion/deletion (indels) located in the sorting nexin 29 (SNX29) gene, which is an important candidate gene related to meat production and quality, are associated with growth traits of African goats and Shaanbei white cashmere goats. However, the genetic effects of SNX29 genetic variation on growth traits of Xiangdong black (XDB) goat (a representative meat goat breed in China) are still unclear. The purpose of this study was to detect the mRNA expression level of SNX29 and to explore the genetic effects of CNV and indel within SNX29 on growth traits and gene expression in XDB goat. The SNX29 mRNA expression profile showed that the SNX29 was highly expressed in adipose tissues, indicating that the SNX29 gene could play a key role in subcutaneous adipose deposition of XDB goat. 17 bp indel (g.10559298-10559314), 21 bp indel (g.10918982-10919002) and CNV were detected in 516 individuals of XDB goat by PCR or qPCR. The association analysis of SNX29 CNV with growth traits in XDB goats showed that SNX29 CNV was significantly correlated with chest circumference and abdominal circumference (p < 0.01), and the normal type of SNX29 CNV goat individuals were more advantageous. For the mRNA expression of SNX29 gene, individuals with SNX29 copy number normal type had a higher trend than that of SNX29 gene with copy number gain type in longissimus dorsi muscle (p = 0.07), whereas individuals with SNX29 copy number gain type had a higher trend in abdominal adipose (p = 0.09). Overall, these results suggested that the SNX29 gene could play an important role in growth and development of XDB goats and could be used for marker-assisted selection (MAS) in XDB goats.
Collapse
|
7
|
Mi F, Wu X, Wang Z, Wang R, Lan X. Relationships between the Mini-InDel Variants within the Goat CFAP43 Gene and Body Traits. Animals (Basel) 2022; 12:ani12243447. [PMID: 36552367 PMCID: PMC9774114 DOI: 10.3390/ani12243447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The cilia- and flagella-associated protein 43 (CFAP43) gene encodes a member of the cilia- and flagellum-associated protein family. Cilia on the cell surface influence intercellular signaling and are involved in biological processes such as osteogenesis and energy metabolism in animals. Previous studies have shown that insertion/deletion (InDel) variants in the CFAP43 gene affect litter size in Shaanbei white cashmere (SBWC) goats, and that litter size and body traits are correlated in this breed. Therefore, we hypothesized that there is a significant relationship between InDel variants within the CFAP43 gene and body traits in SBWC goats. Herein, we first investigated the association between three InDel variant loci (L-13, L-16, and L-19 loci) within CFAP43 and body traits in SBWC goats (n = 1827). Analyses revealed that the L-13, L-16, and L-19 loci were significantly associated with chest depth, four body traits, and three body traits, respectively. The results of this study are in good agreement with those previously reported and could provide useful molecular markers for the selection and breeding of goats for body traits.
Collapse
Affiliation(s)
- Fang Mi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350000, China
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, No. 22, Xinong Road, Xianyang 712100, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350000, China
- Correspondence: (X.W.); (X.L.)
| | - Zhen Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, No. 22, Xinong Road, Xianyang 712100, China
| | - Ruolan Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, No. 22, Xinong Road, Xianyang 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, No. 22, Xinong Road, Xianyang 712100, China
- Correspondence: (X.W.); (X.L.)
| |
Collapse
|
8
|
Zhang Z, Chu M, Bao Q, Bao P, Guo X, Liang C, Yan P. Two Different Copy Number Variations of the SOX5 and SOX8 Genes in Yak and Their Association with Growth Traits. Animals (Basel) 2022; 12:ani12121587. [PMID: 35739923 PMCID: PMC9219506 DOI: 10.3390/ani12121587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Copy number variation (CNV) is a structural variant with significant impact on genetic diversity. CNV has been widely used in breeding for growth traits, meat production or quality, and coat color. SRY-like box genes (SOXs) are a class of transcription factors that play a regulatory role in cell fate specification and differentiation. SOX5 and SOX8 belong to subgroups D and E of the SOXs, respectively. Previous studies have shown that SOX5 and SOX8 are essential in the development of bones. In this study, we explored the association between the growth traits and CNVs of SOX5 and SOX8 in 326 Ashidan yaks and detected mRNA expression levels in different tissues. Our results illustrated that CNVs of SOX5 and SOX8 were significantly associated with withers height at 18 months of age and chest girth at 30 months of age (p < 0.05). The CNV combination of SOX5 and SOX8 was significantly associated with withers height at 18 months of age (p < 0.01). SOX5 expression in the lung was significantly higher than in the heart, spleen, kidney, and muscle (p < 0.05). SOX8 expression in the lung was significantly higher than in the liver and muscle (p < 0.05). Our results provide evidence that the CNVs of SOX5 and SOX8 genes could be used as new markers for the selection of yak growth traits.
Collapse
Affiliation(s)
- Zhilong Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Qi Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (C.L.); (P.Y.)
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (C.L.); (P.Y.)
| |
Collapse
|
9
|
Niu Q, Zhang T, Xu L, Wang T, Wang Z, Zhu B, Zhang L, Gao H, Song J, Li J, Xu L. Integration of selection signatures and multi-trait GWAS reveals polygenic genetic architecture of carcass traits in beef cattle. Genomics 2021; 113:3325-3336. [PMID: 34314829 DOI: 10.1016/j.ygeno.2021.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/05/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022]
Abstract
Carcass merits are widely considered as economically important traits affecting beef production in the beef cattle industry. However, the genetic basis of carcass traits remains to be well understood. Here, we applied multiple methods, including the Composite of Likelihood Ratio (CLR) and Genome-wide Association Study (GWAS), to explore the selection signatures and candidate variants affecting carcass traits. We identified 11,600 selected regions overlapping with 2214 candidate genes, and most of those were enriched in binding and gene regulation. Notably, we identified 66 and 110 potential variants significantly associated with carcass traits using single-trait and multi-traits analyses, respectively. By integrating selection signatures with single and multi-traits associations, we identified 12 and 27 putative genes, respectively. Several highly conserved missense variants were identified in OR5M13D, NCAPG, and TEX2. Our study supported polygenic genetic architecture of carcass traits and provided novel insights into the genetic basis of complex traits in beef cattle.
Collapse
Affiliation(s)
- Qunhao Niu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianliu Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ling Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianzhen Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zezhao Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, USA
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Fertility-Associated Polymorphism within Bovine ITGβ5 and Its Significant Correlations with Ovarian and Luteal Traits. Animals (Basel) 2021; 11:ani11061579. [PMID: 34071201 PMCID: PMC8228251 DOI: 10.3390/ani11061579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The fertility of bovines is essential for cattle husbandry. ITGβ5, which is suggested to be closely related to fertility, is known to mediate cell adhesion and affect a variety of cellular activities. To investigate the relationship between the ITGβ5 gene and the fertility of bovines, 696 ovarian samples were collected and six potential indel (insertion/deletion) within ITGβ5 were analysed, from which a deletion mutation was found to be polymorphic. The genotype frequency and allele frequency of this locus in the investigated population were calculated and the population genetic parameters analyzed. In addition, this locus was found to be significantly correlated with ovarian width and corpus luteum diameter. Considering the importance of ovary and corpus luteum in reproduction, it is tempting to speculate the crucial effects of ITGβ5 on bovine fertility, which still need further validation. The results of our study might provide a theoretical basis for future breeding to enhance bovine reproduction. Abstract There is an urgent need to improve bovine fertility, and molecular marker-assisted selection (MAS) can accelerate this process. Genome-wide association studies suggest that Integrin β5 (ITGβ5) might affect fertility in bovines. As a member of the integrins family, ITGβ5 can bind to the extracellular matrix and mediate various cellular processes. In our study, primers spanning six potential insertion/deletion (indel) polymorphisms within the ITGβ5 gene were designed and 696 ovary samples from different individuals, the vast majority not in oestrum were collected for genetic variation detection. A deletion locus, rs522759246, namely P1-D13-bp, was found to be polymorphic. The allele D frequency was 0.152 and the polymorphism information content (PIC) value was 0.224, indicating a low-degree PIC. This locus did not follow the Hardy–Weinberg equilibrium (p = 1.200E-23). Importantly, associations between P1-D13-bp and ovarian morphological traits were established. Polymorphisms of this locus had significant correlations with ovarian width (p = 0.015). The corpus luteum is also linked to fertility and P1-D13-bp was significantly correlated with corpus luteum diameter (p = 0.005). In conclusion, an indel mutation within the bovine ITGβ5 gene was identified, which was significantly associated with several ovarian and luteal traits.
Collapse
|