1
|
Alagawany M, Farag MR, Al-Harthi MA, Asiry KA, Bovera F, Attia YA. The use of Astragalus membranaceus as an eco-friendly alternative for antibiotics in diets of Japanese quail breeders. Poult Sci 2023; 102:102909. [PMID: 37478618 PMCID: PMC10387600 DOI: 10.1016/j.psj.2023.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
Mature Japanese quails (n. 180), aged 8 wk, were divided into 6 groups to evaluate the influence of dietary Astragalus membranaceus powder on laying and reproductive performances, quality of egg, and blood metabolites. A completely randomized design experiment was performed including 6 groups. The first group of quails was served as control (basal diet). While, the 2nd, 3rd, 4th, 5th, and 6th group of quails fed a basal diet supplemented with 1, 2, 3, 4, and 5 g of AM powder/kg diet, respectively. Egg number (EN), weight (EW), and mass (EM) were not significantly influenced by dietary Astragalus membranaceus at all tested levels. The hatchability percentage was quadratically improved by dietary supplementation of A. membranaceus. Dietary supplementation of A. membranaceus positively affects (linear and quadratic) liver and kidney functions. Plasma total cholesterol (TC; P < 0.001) and Triglyceride (TG; P < 0.001) were linearly and quadratically decreased by dietary A. membranaceus increasing level. Blood urea level decreased with increasing A. membranaceus levels in the quail diet. The immunoglobulin G (IgG) and M (IgM) were higher than the control at all A. membranaceus levels. In conclusion, feeding quail breeders with Astragalus membranaceus at 1 g/kg diet has beneficial effects on feed conversion ratio; on production at 2 g/kg diet; on hatchability and immunity at 5 g/kg diet; and on total cholesterol at 3 g/kg diet and on shell quality at 4 g/kg diet. A. membranaceus products are expected to be novel valuable dietary supplements for poultry production, depending on the target trait.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt.
| | - Mohammed A Al-Harthi
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Asiry
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy
| | - Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Shehata AM, Paswan VK, Attia YA, Abdel-Moneim AME, Abougabal MS, Sharaf M, Elmazoudy R, Alghafari WT, Osman MA, Farag MR, Alagawany M. Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens. Animals (Basel) 2021; 11:3491. [PMID: 34944266 PMCID: PMC8698130 DOI: 10.3390/ani11123491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role in maintaining normal homeostatic conditions by regulating the immune system. In addition, the microbiota helps reduce and prevent pathogen colonization of the gut via the mechanism of competitive exclusion and the synthesis of bactericidal molecules. Under commercial conditions, newly hatched chicks have access to feed after 36-72 h of hatching due to the hatch window and routine hatchery practices. This delay adversely affects the potential inoculation of the healthy microbiota and impairs the development and maturation of muscle, the immune system, and the gastrointestinal tract (GIT). Modulating the gut microbiota has been proposed as a potential strategy for improving host health and productivity and avoiding undesirable effects on gut health and the immune system. Using early-life programming via in ovo stimulation with probiotics and prebiotics, it may be possible to avoid selected metabolic disorders, poor immunity, and pathogen resistance, which the broiler industry now faces due to commercial hatching and selection pressures imposed by an increasingly demanding market.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Vinod K. Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdel-Moneim Eid Abdel-Moneim
- Nuclear Research Center, Biological Applications Department, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt;
| | - Mohammed Sh. Abougabal
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Reda Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Wejdan T. Alghafari
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed A. Osman
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|