1
|
Che Y, Li L, Kong M, Geng Y, Wang D, Li B, Deng L, Chen G, Wang J. Dietary supplementation of Astragalus flavonoids regulates intestinal immunology and the gut microbiota to improve growth performance and intestinal health in weaned piglets. Front Immunol 2024; 15:1459342. [PMID: 39416777 PMCID: PMC11479930 DOI: 10.3389/fimmu.2024.1459342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Astragali Radix (AS) is a widely used herb in traditional Chinese medicine, with calycosin as its main isoflavonoid. Our previous study discovered that calycosin triggers host defense peptide (HDP) production in IPEC-J2 cells. The aim of this study is to investigate the alleviation effects of AS total flavone and AS calycosin on growth performance, intestinal immunity, and microflora in weaned piglets. Sixty-four piglets were assigned randomly to 4 treatment groups, (1) CON: the basal diet, (2) P-CON: the basal diet plus antibiotics (1 g/kg), (3) AS-TF: the basal diet plus AS total flavone at 60 mg/day per piglet, (4) AS-CA: the basal diet plus AS calycosin at 30 mg/day per piglet. Each treatment consists of 4 replicates with 4 piglets per replicate. Results showed that treatment with AS-TF and AS-CA enhanced average daily growth and average daily feed intake compared to the CON group (P < 0.01), while AS-CA significantly reduced the diarrhea rate (P < 0.05). Both AS-TF and AS-CA significantly increased serum immunoglobulin (Ig) A and IgG levels, with AS-CA further boosting intestinal mucosal secretory IgA levels (P < 0.05). Histological analysis revealed improvements in the morphology of the jejunum and ileum and goblet cell count by AS-TF and AS-CA (P < 0.05). Supplementation of AS-TF and AS-CA promoted the expression of several intestinal HDPs (P < 0.05), and the effect of AS-CA was better than that of AS-TF. In addition, the AS-TF and AS-CA regulated jejunal microbial diversity and composition, with certain differential bacteria genera were showing high correlation with serum cytokines and immunoglobulin levels, suggesting that the intestinal flora affected by AS-TF and AS-CA may contribute to host immunity. Overall, AS CA and AS TF all improved growth performance and health, likely by enhancing nutrition digestibility, serum and intestinal immunity, and intestinal microbial composition. They showed the similar beneficial effect, indicating AS CA appears to be a major compound contributing to the effects of AS TF. This study demonstrated the positive effect of AS flavonoids on weaned piglets and provided a scientific reference for the efficient use of AS products.
Collapse
Affiliation(s)
- Yuyan Che
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengjie Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yiwen Geng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bin Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lufang Deng
- Department of Technology, Feed Branch of Beijing Sanyuan Breeding Technology Co., Ltd, Beijing, China
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Fang C, Tang X, Zhang Q, Yu Q, Deng S, Wu S, Fang R. Effects of Dietary Lonicera flos and Sucutellaria baicalensis Mixed Extracts Supplementation on Reproductive Performance, Umbilical Cord Blood Parameters, Colostrum Ingredients and Immunoglobulin Contents of Late-Pregnant Sows. Animals (Basel) 2024; 14:2054. [PMID: 39061516 PMCID: PMC11273922 DOI: 10.3390/ani14142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to determine the effects of dietary Lonicera flos and Sucutellaria baicalensis mixed extract (LSE) supplementation during the late-pregnancy period on the reproductive performance, umbilical cord blood hematological parameters, umbilical cord serum biochemical parameters, immune indices, hormone levels, colostrum ingredients, and immunoglobulin contents of sows. A total of 40 hybrid pregnant sows were randomly assigned to the control group (CON; sows fed a basal diet) and LSE group (LSE; sows fed a basal diet supplemented with 500 g/t PE). The results indicated that dietary LSE supplementation significantly increased (p < 0.05) the number of alive and healthy piglets and the litter weight at birth, and significantly increased (p < 0.05) the platelet counts in umbilical cord blood. Dietary LSE supplementation significantly increased (p < 0.05) the levels of prolactin (PRL) and growth hormone (GH), and the content of interleukin 2 (IL-2) in umbilical cord serum. Moreover, immunoglobulin A (IgA) and immunoglobulin M (IgM) in the colostrum were increased with PE supplementation (p < 0.05). In conclusion, dietary LSE supplementation in late-pregnancy sows could improve reproductive performance and colostrum quality, and could also regulate the levels of reproductive hormone in umbilical cord serum.
Collapse
Affiliation(s)
- Chengkun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Qingtai Zhang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Qifang Yu
- College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Shengting Deng
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Shusong Wu
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| |
Collapse
|
3
|
Tan X, Cui J, Liu N, Wang X, Li H, Liu Y, Zhang W, Ma W, Lu D, Fan Y. Study on the immune-enhancing and inhabiting transmissible gastroenteritis virus effects of polysaccharides from Cimicifuga rhizoma. Microb Pathog 2024; 192:106719. [PMID: 38810768 DOI: 10.1016/j.micpath.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 μg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1β content compared with control group. 250 μg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.
Collapse
Affiliation(s)
- Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Jing Cui
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Nishang Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Xingchen Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
4
|
Liang H, Tao S, Wang Y, Zhao J, Yan C, Wu Y, Liu N, Qin Y. Astragalus polysaccharide: implication for intestinal barrier, anti-inflammation, and animal production. Front Nutr 2024; 11:1364739. [PMID: 38757131 PMCID: PMC11096541 DOI: 10.3389/fnut.2024.1364739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Wu S, Wang L, Cui B, Wen X, Jiang Z, Hu S. Effects of Vitamin A on Growth Performance, Antioxidants, Gut Inflammation, and Microbes in Weaned Piglets. Antioxidants (Basel) 2023; 12:2049. [PMID: 38136169 PMCID: PMC10740560 DOI: 10.3390/antiox12122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Piglet weaning is an important stage in production where changes in the environment and diet can cause problems such as intestinal inflammation and diarrhea. Vitamin A is an essential nutrient for human and animal growth and has immunomodulatory and inflammatory effects. A large body of literature has previously reported on the use of vitamin A in piglet production, so our experiment added different concentrations of vitamin A (0, 1100, 2200, 4400, 8800, and 17,600 IU/kg) to weaned piglet diets to study the effects of different doses on growth performance, intestinal barrier, inflammation, and flora in weaned piglets. We selected 4400 IU/kg as the optimum concentration of vitamin A in relation to average daily weight gain, feed intake, feed-to-weight ratio, and diarrhea rate, and subsequently tested the inflammatory factors, immunoglobulin content, antioxidant levels, and intestinal flora of weaned piglets. Results: We observed that the diarrhea rate of weaned piglets was significantly lower after the addition of 4400 IU/kg of vitamin A to the diet (p < 0.05). A control group and a 4400 IU/kg VA group were selected for subsequent experiments. We found that after the addition of vitamin A, the serum CAT level of weaned piglets increased significantly, the expression of Claudin-1 in the jejunum and ileum increased significantly, the expression of Occludin gene in the jejunum increased significantly, the expression of IL-5 and IL-10 in the ileum increased significantly (p < 0.05), and the expression of IL-4, IL-5, and IL-10 in the ileum increased significantly (p < 0.05). Meanwhile, in the colonic flora of vitamin A-added weaned piglets, the relative abundance of Actinobacteria and Erysipelotrichales decreased significantly, while the relative abundance of Bacteroidales increased significantly (p < 0.05). The results of this study indicated that vitamin A at 4400 IU/kg reduces diarrhea in weaned piglets by increasing antioxidant levels, increasing intestinal tight junction protein gene expression, and regulating colonic gut microbiota.
Collapse
Affiliation(s)
- Shengnan Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Bailei Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Xiaolu Wen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Shenglan Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| |
Collapse
|
6
|
Xie Z, Jiang N, Lin M, He X, Li B, Dong Y, Chen S, Lv G. The Mechanisms of Polysaccharides from Tonic Chinese Herbal Medicine on the Enhancement Immune Function: A Review. Molecules 2023; 28:7355. [PMID: 37959774 PMCID: PMC10648855 DOI: 10.3390/molecules28217355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Tonic Chinese herbal medicine is a type of traditional Chinese medicine, and its primary function is to restore the body's lost nutrients, improve activity levels, increase disease resistance, and alleviate physical exhaustion. The body's immunity can be strengthened by its polysaccharide components, which also have a potent immune-system-protecting effect. Several studies have demonstrated that tonic Chinese herbal medicine polysaccharides can improve the body's immune response to tumor cells, viruses, bacteria, and other harmful substances. However, the regulatory mechanisms by which various polysaccharides used in tonic Chinese herbal medicine enhance immune function vary. This study examines the regulatory effects of different tonic Chinese herbal medicine polysaccharides on immune organs, immune cells, and immune-related cytokines. It explores the immune response mechanism to understand the similarities and differences in the effects of tonic Chinese herbal medicine polysaccharides on immune function and to lay the foundation for the future development of tonic Chinese herbal medicine polysaccharide products.
Collapse
Affiliation(s)
- Zhiyi Xie
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Ninghua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China;
| | - Minqiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Wang X, Li X, Zhang L, An L, Guo L, Huang L, Gao W. Recent progress in plant-derived polysaccharides with prebiotic potential for intestinal health by targeting gut microbiota: a review. Crit Rev Food Sci Nutr 2023:1-30. [PMID: 37651130 DOI: 10.1080/10408398.2023.2248631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Natural products of plant origin are of high interest and widely used, especially in the food industry, due to their low toxicity and wide range of bioactive properties. Compared to other plant components, the safety of polysaccharides has been generally recognized. As dietary fibers, plant-derived polysaccharides are mostly degraded in the intestine by polysaccharide-degrading enzymes secreted by gut microbiota, and have potential prebiotic activity in both non-disease and disease states, which should not be overlooked, especially in terms of their involvement in the treatment of intestinal diseases and the promotion of intestinal health. This review elucidates the regulatory effects of plant-derived polysaccharides on gut microbiota and summarizes the mechanisms involved in targeting gut microbiota for the treatment of intestinal diseases. Further, the structure-activity relationships between different structural types of plant-derived polysaccharides and the occurrence of their prebiotic activity are further explored. Finally, the practical applications of plant-derived polysaccharides in food production and food packaging are summarized and discussed, providing important references for expanding the application of plant-derived polysaccharides in the food industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Tian Q, Huo X, Liu Q, Yang C, Zhang Y, Su J. VP4/VP56/VP35 Virus-like Particles Effectively Protect Grass Carp ( Ctenopharyngodon idella) against GCRV-II Infection. Vaccines (Basel) 2023; 11:1373. [PMID: 37631941 PMCID: PMC10458301 DOI: 10.3390/vaccines11081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Grass carp reovirus (GCRV) seriously threatens the grass carp (Ctenopharyngodon idella) industry. Prophylactic GCRV vaccines prepared by virus-like particle (VLP) assembly biotechnology can improve effectiveness and safety. The highly immunogenic candidate antigens of GCRV vaccines that have been generally considered are the outer capsid proteins VP4, VP56, and VP35. In this study, VP4, VP56, and VP35 were expressed in an Escherichia coli expression system and a Pichia pastoris expression system. The successful assembly of uniform, stable, and non-toxic VP4/VP56/VP35 VLPs was confirmed through various assays. After vaccination and GCRV infection, the survival rate in the VLPs + adjuvant Astragalus polysaccharide (APS) group was the highest (62%), 40% higher than that in control group (22%). Through the antibody levels, tissue viral load, and antioxidant immunity assays, the P. pastoris VLP vaccine effectively improved IgM levels, alleviated tissue virus load, and regulated antioxidant immune-related indicators. The treatment with P. pastoris VLPs enhanced the mRNA expression of important immune-related genes in the head kidney, as measured by qRT-PCR assay. Upon hematoxylin-eosin staining examination, relatively reduced tissue pathological damage was observed in the VLPs + APS group. The novel vaccine using P. pastoris VLPs as an effective green biological agent provides a prospective strategy for the control of fish viral diseases.
Collapse
Affiliation(s)
- Qingqing Tian
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China;
| | - Yongan Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Novel Compound Polysaccharides from Chinese Herbal Medicines: Purification, Characterization, and Antioxidant Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9973419. [PMID: 35720177 PMCID: PMC9205717 DOI: 10.1155/2022/9973419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The present study investigated physicochemical properties and antioxidant activities in vivo and in vitro of purified compound polysaccharides (CPs-1) from Chinese herbal medicines, composed of lotus leaf, hawthorn, Fagopyrum tataricum, Lycium barbarum, Semen cassiae, and Poria cocos with the mass ratio of 2 : 4 : 2 : 1 : 1.5 : 1. The HPGPC profile and FT-IR spectra indicated that the average molecular weight of CPs-1 was 38.7 kDa and possessed the α- and β-D-pyranose, respectively. The methylation analysis and NMR spectrum demonstrated that CPs-1 had a →6)-β-D-Glcp-(1→6)-β-D-Glcp(1→ backbone. Furthermore, the antioxidant assays in vitro revealed that CPs-1 displayed high scavenging abilities for DPPH, hydroxyl, and reducing power, as well as ABTS and superoxide scavenging capacity. The antioxidant experiments in vivo revealed that CPs-1 could significantly enhance CAT, SOD, and GSH-Px activities and dramatically reduce MDA levels in liver and serum of high-fat mice. Therefore, CPs-1 could be potentially incorporated into pharmaceutical products or functional foods as a natural antioxidant.
Collapse
|