1
|
Sukhija N, Malik AA, Devadasan JM, Dash A, Bidyalaxmi K, Ravi Kumar D, Kousalaya Devi M, Choudhary A, Kanaka KK, Sharma R, Tripathi SB, Niranjan SK, Sivalingam J, Verma A. Genome-wide selection signatures address trait specific candidate genes in cattle indigenous to arid regions of India. Anim Biotechnol 2024; 35:2290521. [PMID: 38088885 DOI: 10.1080/10495398.2023.2290521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The peculiarity of Indian cattle lies in milk quality, resistance to diseases and stressors as well as adaptability. The investigation addressed selection signatures in Gir and Tharparkar cattle, belonging to arid ecotypes of India. Double digest restriction-site associated DNA sequencing (ddRAD-seq) yielded nearly 26 million high-quality reads from unrelated seven Gir and seven Tharparkar cows. In all, 19,127 high-quality SNPs were processed for selection signature analysis. An approach involving within-population composite likelihood ratio (CLR) statistics and between-population FST statistics was used to capture selection signatures within and between the breeds, respectively. A total of 191 selection signatures were addressed using CLR and FST approaches. Selection signatures overlapping 86 and 73 genes were detected as Gir- and Tharparkar-specific, respectively. Notably, genes related to production (CACNA1D, GHRHR), reproduction (ESR1, RBMS3), immunity (NOSTRIN, IL12B) and adaptation (ADAM22, ASL) were annotated to selection signatures. Gene pathway analysis revealed genes in insulin/IGF pathway for milk production, gonadotropin releasing hormone pathway for reproduction, Wnt signalling pathway and chemokine and cytokine signalling pathway for adaptation. This is the first study where selection signatures are identified using ddRAD-seq in indicine cattle breeds. The study shall help in conservation and leveraging genetic improvements in Gir and Tharparkar cattle.
Collapse
Affiliation(s)
- Nidhi Sukhija
- ICAR-National Dairy Research Institute, Karnal, India
| | - Anoop Anand Malik
- TERI School of Advanced Studies, Delhi, India
- The Energy and Resources Institute, North Eastern Regional Centre, Guwahati, India
| | | | | | - Kangabam Bidyalaxmi
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - D Ravi Kumar
- ICAR-National Dairy Research Institute, Karnal, India
| | | | | | - K K Kanaka
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | | | | | - Archana Verma
- ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
2
|
Sivalingam J, Niranjan SK, Yadav DK, Singh SP, Sukhija N, Kanaka KK, Singh PK, Singh AP. Phenotypic and genetic characterization of unexplored, potential cattle population of Madhya Pradesh. Trop Anim Health Prod 2024; 56:102. [PMID: 38478192 DOI: 10.1007/s11250-024-03946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Bawri or Garri, a non-descript cattle population managed under an extensive system in Madhya Pradesh state of India, was identified and characterized both genetically and phenotypically to check whether or not it can be recognised as a breed. The cattle have white and gray colour and are medium sized with 122.5 ± 7.5 cm and 109.45 ± 0.39 cm height at withers in male and female, respectively. Double-digest restriction site associated DNA (ddRAD) sequencing was employed to identify ascertainment bias free SNPs representing the entire genome cost effectively; resulting in calling 1,156,650 high quality SNPs. Observed homozygosity was 0.76, indicating Bawri as a quite unique population. However, the inbreeding coefficient was 0.025, indicating lack of selection. SNPs found here can be used in GWAS and genetic evaluation programs. Considering the uniqueness of Bawri cattle, it can be registered as a breed for its better genetic management.
Collapse
Affiliation(s)
- Jayakumar Sivalingam
- Presently at ICAR-Directorate of Poultry Research, Hyderabad, India.
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | - S K Niranjan
- Presently at ICAR-Directorate of Poultry Research, Hyderabad, India
| | | | - S P Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Nidhi Sukhija
- Krishi Vigyan Kendra, Rajmata Vijayaraje Scindia Krishi Vishwavidyalaya, Morena, MP, India
| | - K K Kanaka
- Central Tasar Research and Training Institute, Ranchi, India
| | - P K Singh
- Presently at ICAR-Directorate of Poultry Research, Hyderabad, India
| | - Ajit Pratap Singh
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- Nanaji Deshmukh Veterinary Science University, Jabalpur, MP, India
| |
Collapse
|
3
|
Arshad M, Noor N, Iqbal Z, Jaleel H. In silico analysis of missense SNPs in TNFR1a and their possible therapeutic or pathogenic role in immune diseases. Hum Immunol 2023; 84:609-617. [PMID: 37748952 DOI: 10.1016/j.humimm.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Tumor necrosis factor alpha (TNFa) is an inflammatory cytokine that is involved in the pathogenesis of various inflammatory disorders including rheumatoid arthritis. TNF-alpha receptor I (TNFR1a) is one of the receptors TNFa binds with for its activation. Any variation in this receptor might affect the role of TNFa in successive events. Amino acid residue substitutions might happen in TNFR1a through non-synonymous single nucleotide polymorphisms (nsSNPs) which may alter the functioning of TNFa, hence, identifying any such substitutions is of paramount significance. In this study, six nsSNPs at five different evolutionary conserved regions are predicted to be detrimental to the structure and/or function of TNFR1a by using numerous computational tools. Their 3D models are also proposed in this study. Besides, they were found to reduce the stability and affect the molecular mechanisms of this protein. Two contrasting possibilities might happen because of these substitutions. One, they might reduce the production of TNFa which is overexpressed in inflammatory diseases, hence can play therapeutic role in such diseases. Second, they might possibly hinder the apoptosis to occur which can effectuate the uncontrolled division of cells, hence can be pathogenic in diseases like cancer. Further investigations on these nsSNPs using animal models and at cellular level will open doors to understand the underlying mechanisms behind various diseases.
Collapse
Affiliation(s)
- Maria Arshad
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland.
| | - Nabeel Noor
- Shalamar Medical & Dental College, Lahore, Pakistan
| | - Zunair Iqbal
- Shalamar Medical & Dental College, Lahore, Pakistan
| | - Hadiqa Jaleel
- Department of Research & Innovation, Shalamar Institute of Health Sciences, Lahore, Pakistan
| |
Collapse
|