1
|
Liu W, Zhang M, Mujumdar AS, Chen J. Role of dehydration technologies in processing for advanced ready-to-eat foods: A comprehensive review. Crit Rev Food Sci Nutr 2021; 63:5506-5520. [PMID: 34961367 DOI: 10.1080/10408398.2021.2021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Advanced ready-to-eat foods, which can be consumed directly or only need simple processed before consumption, refer to the products that processing with cutting-edge food science and technology and have better quality attribute. Cold chain and chemical addition are commonly used options to ensure microbial safety of high moisture advanced ready-to-eat foods. However, this requires freezing/thawing processing at high cost or has undesirable residue. Dehydration treatment has the potential to compensate those shortcomings. This article reviewed the positive effects of dehydration on advanced ready-to-eat foods, current application status of dehydration technologies, novel dehydration related technologies and the pathogenic bacteria control of products. It is observed that dehydration treatment is receiving increasing attention for ready-to-eat foods including space foods, 3 D-printed personalized foods and formula foods for special medical purposes. Recently developed drying technologies such as pulsed spouted microwave freeze-drying and infrared freeze-drying have attracted much interest due to their excellent drying characteristics. Finally, intelligent drying, dehydration-nano-hybridization and dehydration-induced multi-dimensional modification technology are some of the emerging R and D areas in this field.
Collapse
Affiliation(s)
- Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
2
|
Oliveira-Alves SC, Andrade F, Prazeres I, Silva AB, Capelo J, Duarte B, Caçador I, Coelho J, Serra AT, Bronze MR. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia ramosissima J. Woods. Antioxidants (Basel) 2021; 10:1312. [PMID: 34439560 PMCID: PMC8389250 DOI: 10.3390/antiox10081312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Salicornia ramosissima J. Woods is a halophyte plant recognized as a promising natural ingredient and will eventually be recognized a salt substitute (NaCl). However, its shelf-life and applicability in several food matrices requires the use of drying processes, which may have an impact on its nutritional and functional value. The objective of this study was to evaluate the effect of oven and freeze-drying processes on the nutritional composition, volatile profile, phytochemical content, and bioactivity of S. ramosissima using several analytical tools (LC-DAD-ESI-MS/MS and SPME-GC-MS) and bioactivity assays (ORAC, HOSC, and ACE inhibition and antiproliferative effect on HT29 cells). Overall, results show that the drying process changes the chemical composition of the plant. When compared to freeze-drying, the oven-drying process had a lower impact on the nutritional composition but the phytochemical content and antioxidant capacity were significantly reduced. Despite this, oven-dried and freeze-dried samples demonstrated similar antiproliferative (17.56 mg/mL and 17.24 mg/mL, respectively) and antihypertensive (24.56 mg/mL and 18.96 mg/mL, respectively) activities. The volatile composition was also affected when comparing fresh and dried plants and between both drying processes: while for the freeze-dried sample, terpenes corresponded to 57% of the total peak area, a decrease to 17% was observed for the oven-dried sample. The oven-dried S. ramosissima was selected to formulate a ketchup and the product formulated with 2.2% (w/w) of the oven-dried plant showed a good consumer acceptance score. These findings support the use of dried S. ramosissima as a promising functional ingredient that can eventually replace the use of salt.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Inês Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Andreia B. Silva
- DCFM, Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge Capelo
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, 2780-505 Oeiras, Portugal;
| | - Bernardo Duarte
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Júlio Coelho
- Horta da Ria Lda., Rua de São Rui, 3830-362 Gafanha Nazaré, Portugal;
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria R. Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|