1
|
Furfaro G, D'Elia M, Mariano S, Trainito E, Solca M, Piraino S, Belmonte G. SEM/EDX analysis of stomach contents of a sea slug snacking on a polluted seafloor reveal microplastics as a component of its diet. Sci Rep 2022; 12:10244. [PMID: 35715497 PMCID: PMC9206003 DOI: 10.1038/s41598-022-14299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding the impacts of microplastics on living organisms in aquatic habitats is one of the hottest research topics worldwide. Despite increased attention, investigating microplastics in underwater environments remains a problematic task, due to the ubiquitous occurrence of microplastic, its multiple modes of interactions with the biota, and to the diversity of the synthetic organic polymers composing microplastics in the field. Several studies on microplastics focused on marine invertebrates, but to date, the benthic sea slugs (Mollusca, Gastropoda, Heterobranchia) were not yet investigated. Sea slugs are known to live on the organisms on which they feed on or to snack while gliding over the sea floor, but also as users of exogenous molecules or materials not only for nutrition. Therefore, they may represent a potential biological model to explore new modes of transformation and/or management of plastic, so far considered to be a non-biodegradable polymer. In this study we analysed the stomachal content of Bursatella leachii, an aplysiid heterobranch living in the Mar Piccolo, a highly polluted coastal basin near Taranto, in the northern part of the Ionian Sea. Microplastics were found in the stomachs of all the six sampled specimens, and SEM/EDX analyses were carried out to characterize the plastic debris. The SEM images and EDX spectra gathered here should be regarded as a baseline reference database for future investigations on marine Heterobranchia and their interactions with microplastics.
Collapse
Affiliation(s)
- Giulia Furfaro
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Via Prov.le Lecce-Monteroni, 73100, Lecce, Italy.
| | - Marcella D'Elia
- Department of Mathematics and Physics "Ennio de Giorgi", University of Salento, Via Prov.Le Lecce-Monteroni, 73100, Lecce, Italy
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Via Prov.le Lecce-Monteroni, 73100, Lecce, Italy
| | - Egidio Trainito
- Marine Protected Area 'Tavolara-Punta Coda Cavallo', Olbia, Italy
| | - Michele Solca
- Museo di Biologia Marina "Pietro Parenzan", Via Vespucci 13/17, Porto Cesareo, 73010, Lecce, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Via Prov.le Lecce-Monteroni, 73100, Lecce, Italy.,Museo di Biologia Marina "Pietro Parenzan", Via Vespucci 13/17, Porto Cesareo, 73010, Lecce, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), P.le Flaminio 9, 00198, Rome, Italy
| | - Genuario Belmonte
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Via Prov.le Lecce-Monteroni, 73100, Lecce, Italy.,Museo di Biologia Marina "Pietro Parenzan", Via Vespucci 13/17, Porto Cesareo, 73010, Lecce, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), P.le Flaminio 9, 00198, Rome, Italy
| |
Collapse
|
2
|
Bursatella leachii Purple Ink Secretion Concentrate Exerts Cytotoxic Properties against Human Hepatocarcinoma Cell Line (HepG2): In Vitro and In Silico Studies. Molecules 2022; 27:molecules27030826. [PMID: 35164089 PMCID: PMC8839718 DOI: 10.3390/molecules27030826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Liver cancer is a leading cause of cancer death globally. Marine mollusc-derived drugs have gained attention as potential natural-based anti-cancer agents to overcome the side effects caused by conventional chemotherapeutic drugs during cancer therapy. Using liquid chromatography-mass spectrometry, the main biomolecules in the purple ink secretion released by the sea hare, named Bursatella leachii (B. leachii), were identified as hectochlorin, malyngamide X, malyngolide S, bursatellin and lyngbyatoxin A. The cytotoxic effects of B. leachii ink concentrate against human hepatocarcinoma (HepG2) cells were determined to be dose- and time-dependent, and further exploration of the underlying mechanisms causing the programmed cell death (apoptosis) were performed. The expression of cleaved-caspase-8 and cleaved-caspase-3, key cysteine-aspartic proteases involved in the initiation and completion of the apoptosis process, appeared after HepG2 cell exposure to the B. leachii ink concentrate. The gene expression levels of pro-apoptotic BAX, TP53 and Cyclin D1 were increased after treatment with the B. leachii ink concentrate. Applying in silico approaches, the high scores predicted that bioactivities for the five compounds were protease and kinase inhibitors. The ADME and cytochrome profiles for the compounds were also predicted. Altogether, the B. leachii ink concentrate has high pro-apoptotic potentials, suggesting it as a promising safe natural product-based drug for the treatment of liver cancer.
Collapse
|
3
|
Pan Q, Sun Y, Li X, Zeng B, Chen D. Extraction, structural characterization, and antioxidant and immunomodulatory activities of a polysaccharide from Notarchus leachii freeri eggs. Bioorg Chem 2021; 116:105275. [PMID: 34601298 DOI: 10.1016/j.bioorg.2021.105275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
The crude polysaccharides (NLCEP) were extracted from Notarchus leachii freeri eggs strings by the saltextractionmethod. The extraction conditions were optimized using the single-factorexperimentmethod and response surface method (RSM). The results showed that the maximum extraction yield of NLCEP was obtained under the following conditions: NaCl solution concentration of 2.96 %, raw material to liquid ratio of 1: 40 g/mL, extraction time of 2 h and extraction temperature of 69 °C. A new novel pure polysaccharide fraction named as NLCEPs-1 was fractionated from NLCEP by using DEAE-Cellulose 52 and Sephadex G-100. Its structure and immunomodulatory and antioxidant activities were analyzed. The results exhibited that the molecular weight of NLCEPs-1 was 31.4 kDa and it was composed of rhamnose, glucose, galactose, xylose and arabinose in the molar percentage of 11.128: 63.770: 5.439: 6.585: 13.077. The backbone of NLCEPs-1 was mainly consisted of → )4-α-d-Glcp (1→, →6)-α-d-Glcp (1→, →1)-β-d-Galp and β-d-Galp-(1→. NLCEPs-1 exhibited the strong antioxidant activity in scavenging ability of various free radicals and immunomodulatory activity by the enhancement of the pinocytic capacity, nitric oxide (NO) and cytokines.
Collapse
Affiliation(s)
- Qiting Pan
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Yulin Sun
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong Province 524048, China
| | - Xuyan Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong Province 524048, China
| | - Buyan Zeng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong Province 524048, China
| | - Daohai Chen
- Western Guangdong Engineering Research Center on Sustainable Utilization of Seafood Resources, Zhanjiang, Guangdong Province 524048, China; Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong Province 524048, China.
| |
Collapse
|
4
|
Dhahri M, Sioud S, Dridi R, Hassine M, Boughattas NA, Almulhim F, Al Talla Z, Jaremko M, Emwas AHM. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS OMEGA 2020; 5:14786-14795. [PMID: 32596616 PMCID: PMC7315596 DOI: 10.1021/acsomega.0c01724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Bioactive compounds for drug discovery are increasingly extracted and purified from natural sources including marine organisms. Heparin is a therapeutic agent that has been used for several decades as an anticoagulant. However, heparin is known to cause many undesirable complications such as thrombocytopenia and risk of hemorrhage. Hence, there is a need to find alternatives to current widely used anticoagulant drugs. Here, we extract a sulfated polysaccharide from sea hare, that is, Bursatella leachii viscera, by enzymatic digestion. Several analytical approaches including elemental analysis, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-performance liquid chromatography-mass spectrometry analysis show that B. leachii polysaccharides have chemical structures similar to glycosaminoglycans. We explore the anticoagulant activity of the B. leachii extract using the activated partial thromboplastin time and the thrombin time. Our results demonstrate that the extracted sulfated polysaccharide has heparin-like anticoagulant activity, thus showing great promise as an alternative anticoagulant therapy.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department,
Faculty of Science Yanbu, Taibah University, 46423 Yanbu El-Bahr, Saudi Arabia
| | - Salim Sioud
- Analytical Core Lab, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Rihab Dridi
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Mohsen Hassine
- Hematology Department, Fattouma Bourguiba University Hospital, 5000 Monastir, Tunisia
| | - Naceur A. Boughattas
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Fatimah Almulhim
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Zeyad Al Talla
- ANPERC, King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Mariusz Jaremko
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdul-Hamid M. Emwas
- Core Labs, King
Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| |
Collapse
|
5
|
Baessa M, Rodrigues M, Pereira C, Santos T, da Rosa Neng N, Nogueira J, Barreira L, Varela J, Ahmed H, Asif S, Boukhari S, Kayani W, Ahmad KS, Zengin G, Mollica A, Custódio L. A comparative study of the in vitro enzyme inhibitory and antioxidant activities of Butea monosperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret from Pakistan: New sources of natural products for public health problems. SOUTH AFRICAN JOURNAL OF BOTANY 2019; 120:146-156. [DOI: 10.1016/j.sajb.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|