1
|
González-Costa A, Fernández-Gago R, Carid S, Molist P. Mucus characterisation in the Octopus vulgaris skin throughout its life cycle. Anat Histol Embryol 2020; 49:502-510. [PMID: 32198901 DOI: 10.1111/ahe.12554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 03/03/2020] [Indexed: 11/26/2022]
Abstract
The development of the epidermis of octopus, Octopus vulgaris, throughout its life cycle was studied by conventional staining and histochemical techniques using lectins. The mantle, the arm and the two parts of the suckers: the infundibulum and the acetabulum were analysed independently. With the exception of the suckers, the general morphology of the epidermis does not vary from the first days post-hatching to adulthood. In general terms, histochemical techniques do not indicate changes in the composition of glycoconjugates of the epidermis main cells, epithelial and secretory cells. The epithelial cells of the mantle and arm show positivity for mannose (ConA+) in their apical portions, indicating the presence of n-glycoproteins that, among other things, provide lubrication to the surface of the body. In the suckers, the apical surface of the infundibulum contains sulphated glycosaminoglycans of the N-acetylglucosamine type that provide adhesive properties. In addition to observing three types of mucocytes, m1 and m2 are characteristic of the mantle and arm, and m3 is found in the suckers. The paralarva epidermis is characterised by the presence of Kölliker's organs whose exact function is unknown. In this study, the absence of staining with alcian blue/periodic acid-Schiff(AB/PAS) prevents the possibility of attributing a secretory function. Nevertheless, the linkage of three lectins (WGA, LEL and GSL-I) in the fascicle of the organ suggests the presence of proteoglycans rich in N-acetylglucosamine that would mainly have a structural role.
Collapse
Affiliation(s)
- Alba González-Costa
- Department of Functional Biology and Health Science, University of Vigo, Vigo, Spain
| | - Raquel Fernández-Gago
- Department of Functional Biology and Health Science, University of Vigo, Vigo, Spain
| | - Sofía Carid
- Department of Functional Biology and Health Science, University of Vigo, Vigo, Spain
| | - Pilar Molist
- Department of Functional Biology and Health Science, University of Vigo, Vigo, Spain
| |
Collapse
|
2
|
Caruana NJ, Strugnell JM, Finn J, Faou P, Plummer KM, Cooke IR. Quantitative Proteomic Analysis of the Slime and Ventral Mantle Glands of the Striped Pyjama Squid ( Sepioloidea lineolata). J Proteome Res 2020; 19:1491-1501. [PMID: 32091901 DOI: 10.1021/acs.jproteome.9b00738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cephalopods are known to produce an extensive range of secretions including ink, mucus, and venom. Sepiadariidae, a family of small, benthic bobtail squids, are notable for the high volume of viscous slime they emit when stressed. One species, Sepioloidea lineolata (striped pyjama squid), is covered with glands along the perimeter of the ventral mantle, and these structures are hypothesized to be the source of its slime. Using label-free quantitative proteomics, we analyzed five tissue types (dorsal and ventral mantle muscle, dorsal and ventral epithelium, and ventral mantle glands) and the slime from four individuals. In doing so, we were able to determine the relationship between the slime and the tissues as well as highlight proteins that were specifically identified within the slime and ventral mantle glands. A total of 28 proteins were identified to be highly enriched in slime, and these were composed of peptidases and protease inhibitors. Seven of these proteins contained predicted signal peptides, indicating classical secretion, with four proteins having no identifiable domains or similarity to any known proteins. The ventral mantle glands also appear to be the tissue with the closest overall proteomic composition to the slime; therefore, it is likely that the slime originates, at least in part, from these glands.
Collapse
Affiliation(s)
- Nikeisha J Caruana
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jan M Strugnell
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria 3086, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland 4811, Australia
| | - Julian Finn
- Sciences, Museums Victoria, Carlton, Victoria 3053, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ira R Cooke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
3
|
Zeng F, Wunderer J, Salvenmoser W, Ederth T, Rothbächer U. Identifying adhesive components in a model tunicate. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190197. [PMID: 31495315 DOI: 10.1098/rstb.2019.0197] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tunicates populate a great variety of marine underwater substrates worldwide and represent a significant concern in marine shipping and aquaculture. Adhesives are secreted from the anterior papillae of their swimming larvae, which attach and metamorphose into permanently adhering, filter-feeding adults. We recently described the cellular composition of the sensory adhesive organ of the model tunicate Ciona intestinalis in great detail. Notably, the adhesive secretions of collocytes accumulate at the tip of the organ and contain glycoproteins. Here, we further explore the components of adhesive secretions and have screened for additional specificities that may influence adhesion or cohesion of the Ciona glue, including other carbohydrate moieties, catechols and substrate properties. We found a distinct set of sugar residues in the glue recognized by specific lectins with little overlap to other known marine adhesives. Surprisingly, we also detect catechol residues that likely originate from an adjacent cellular reservoir, the test cells. Furthermore, we provide information on substrate preferences where hydrophobicity outperforms charge in the attachment. Finally, we can influence the settlement process by the addition of hydrophilic heparin. The further analysis of tunicate adhesive strategies should provide a valuable knowledge source in designing physiological adhesives or green antifoulants. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Julia Wunderer
- Department of Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Department of Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Thomas Ederth
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Ute Rothbächer
- Department of Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Lengerer B, Ladurner P. Properties of temporary adhesion systems of marine and freshwater organisms. ACTA ACUST UNITED AC 2018; 221:221/16/jeb182717. [PMID: 30166319 DOI: 10.1242/jeb.182717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Underwater adhesive secretions are a promising source of inspiration for biomedical and industrial applications. Although marine permanent adhesives have been extensively investigated, reversible adhesion, e.g. as used for locomotion and feeding, is still poorly understood. Here, we summarise the current knowledge on secretion-based, temporary adhesive systems in aquatic environments, with a special emphasis on the morphology and structure of adhesive organs and adhesive material. Many animals employing temporary adhesion to the substratum rely on so-called duo-gland adhesive organs, consisting of two secretory gland cells and one supportive cell. We give a detailed depiction of a basic duo-gland adhesive organ and variations thereof. Additionally, we discuss temporary adhesive systems with an alternative building plan. Next, the topography of secreted adhesive footprints is described based on examples. The limited data on the composition of temporary adhesives are summarised, separating known protein components and carbohydrate residues. There are still large gaps in our understanding of temporary adhesion. We discuss three proposed models for detachment, although the actual mechanism of voluntary detachment is still a matter for debate.
Collapse
Affiliation(s)
- Birgit Lengerer
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Lengerer B, Bonneel M, Lefevre M, Hennebert E, Leclère P, Gosselin E, Ladurner P, Flammang P. The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2071-2086. [PMID: 30202680 PMCID: PMC6122182 DOI: 10.3762/bjnano.9.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Background: Marine biological adhesives are a promising source of inspiration for biomedical and industrial applications. Nevertheless, natural adhesives and especially temporary adhesion systems are mostly unexplored. Sea stars are able to repeatedly attach and detach their hydraulic tube feet. This ability is based on a duo-gland system and, upon detachment, the adhesive material stays behind on the substrate as a 'footprint'. In recent years, characterization of sea star temporary adhesion has been focussed on the forcipulatid species Asterias rubens. Results: We investigated the temporary adhesion system in the distantly related valvatid species Asterina gibbosa. The morphology of tube feet was described using histological sections, transmission-, and scanning electron microscopy. Ultrastructural investigations revealed two adhesive gland cell types that both form electron-dense secretory granules with a more lucid outer rim and one de-adhesive gland cell type with homogenous granules. The footprints comprised a meshwork on top of a thin layer. This topography was consistently observed using various methods like scanning electron microscopy, 3D confocal interference microscopy, atomic force microscopy, and light microscopy with crystal violet staining. Additionally, we tested 24 commercially available lectins and two antibodies for their ability to label the adhesive epidermis and footprints. Out of 15 lectins labelling structures in the area of the duo-gland adhesive system, only one also labelled footprints indicating the presence of glycoconjugates with α-linked mannose in the secreted material. Conclusion: Despite the distant relationship between the two sea star species, the morphology of tube feet and topography of footprints in A. gibbosa shared many features with the previously described findings in A. rubens. These similarities might be due to the adaptation to a benthic life on rocky intertidal areas. Lectin- and immuno-labelling indicated similarities but also some differences in adhesive composition between the two species. Further research on the temporary adhesive of A. gibbosa will allow the identification of conserved motifs in sea star adhesion and might facilitate the development of biomimetic, reversible glues.
Collapse
Affiliation(s)
- Birgit Lengerer
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Marie Bonneel
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Mathilde Lefevre
- Cell Biology Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Elise Hennebert
- Cell Biology Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Philippe Leclère
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, 20 Place du Parc, 7000 Mons, Belgium
| | - Emmanuel Gosselin
- Laboratory of Physics of Surfaces and Interfaces (LPSI), University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
6
|
von Byern J, Cyran N, Klepal W, Nödl MT, Klinger L. Characterization of the adhesive dermal secretion of Euprymna scolopes Berry, 1913 (Cephalopoda). ZOOLOGY 2016; 120:73-82. [PMID: 27646066 DOI: 10.1016/j.zool.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/28/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Bio-adhesion is a common and crucial process in nature and is used by several different species for camouflage, prey capture, hatching or to avoid drifting. Four genera of cephalopods belonging to four different families (Euprymna, Sepiolidae; Idiosepius, Idiosepiidae; Nautilus, Nautilidae; and Sepia, Sepiidae) produce glue for temporary attachment. Euprymna species live in near-shore benthic habitats of the Indo-Pacific Ocean, are nocturnal and bury into the seafloor during the day. The animals secrete adhesives through their epithelial glands to completely coat themselves with sand. In cases of danger, they instantaneously release the sandy coat as a sinking decoy to deflect predators. Earlier morphological investigations have shown that the adhesive gland cells of Euprymna scolopes are scattered on the dorsal epidermis. It has been proposed that neutral mucopolysaccharides, secreted by one gland type (goblet cells), are responsible for adhesion, whereas the release of the glue could be caused by acidic mucoproteins produced by ovate cells in the ventral epidermis. The ultrastructural re-investigation of the Euprymna epithelium in this study has indicated the presence of a new gland type (named flask cell), exclusively located in the dorsal epithelium and always neighboured to the known goblet cells. Based on our histochemical observations, the secretory material of the ovate cells does not display a strong reaction to tests for acidic groups, as had been previously assumed. Within the dermis, a large muscle network was found that was clearly distinctive from the normal mantle musculature. Based on our data, an antagonistic gland system, as previously proposed, seems to be unlikely for Euprymna scolopes. We hypothesize that the adhesive secretion is formed by two gland types (goblet and flask cells). The release of the sand coat may occur mechanically, i.e. by contraction of the dermal mantle muscle, and not chemically through the ovate cells.
Collapse
Affiliation(s)
- Janek von Byern
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria; Core Facility Cell Imaging and Ultrastructural Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Norbert Cyran
- Core Facility Cell Imaging and Ultrastructural Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Waltraud Klepal
- Core Facility Cell Imaging and Ultrastructural Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Marie Therese Nödl
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Lisa Klinger
- Core Facility Cell Imaging and Ultrastructural Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
7
|
Cyran N, Klepal W, Städler Y, Schönenberger J, von Byern J. Alterations in the mantle epithelium during transition from hatching gland to adhesive organ of Idiosepius pygmaeus (Mollusca, Cephalopoda). Mech Dev 2014; 135:43-57. [PMID: 25483816 DOI: 10.1016/j.mod.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Epithelial gland systems play an important role in marine molluscs in fabricating lubricants, repellents, fragrances, adhesives or enzymes. In cephalopods the typically single layered epithelium provides a highly dynamic variability and affords a rapid rebuilding of gland cells. While the digestive hatching gland (also named Hoyle organ) is obligatory for most cephalopods, only four genera (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions by means of glandular cells in an adhesive area on the mantle or tentacles. In Idiosepius this adhesive organ is restricted to the posterior part of the fin region on the dorsal mantle side and well developed in the adult stage. Two gland cell types could be distinguished, which produce different contents of the adhesive. During the embryonic development the same body area is occupied by the temporary hatching gland. The question arises, in which way the hatching gland degrades and is replaced by the adhesive gland. Ultrastructural analyses as well as computer tomography scans were performed to monitor the successive post hatching transformation in the mantle epithelium from hatching gland degradation to the formation of the adhesive organ. According to our investigations the hatching gland cells degrade within about 1 day after hatching by a type of programmed cell death and leave behind a temporary cellular gap in this area. First glandular cells of the adhesive gland arise 7 days after hatching and proceed evenly over the posterior mantle epithelium. In contrast, the accompanying reduction of a part of the dorsal mantle musculature is already established before hatching. The results demonstrate a distinct independence between the two gland systems and illustrate the early development of the adhesive organ as well as the corresponding modifications within the mantle.
Collapse
Affiliation(s)
- Norbert Cyran
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructural Research, University of Vienna, Althanstrasse 14, Vienna 1090, Austria.
| | - Waltraud Klepal
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructural Research, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Yannick Städler
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Jürg Schönenberger
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Janek von Byern
- Center for Integrative Bioinformatics Vienna, Max F Perutz Laboratories, Dr. Bohr-Gasse 9, Vienna 1030, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna 1200, Austria
| |
Collapse
|
8
|
Lee DG, Park MW, Kim BH, Kim H, Jeon MA, Lee JS. Microanatomy and ultrastructure of outer mantle epidermis of the cuttlefish, Sepia esculenta (Cephalopoda: Sepiidae). Micron 2013; 58:38-46. [PMID: 24361231 DOI: 10.1016/j.micron.2013.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/25/2022]
Abstract
This study describes the ultrastructural characteristics of external epidermis of mantle of Sepia esculenta using light and electron microscopy. The epidermis was thicker on the ventral surface than on the dorsal surface, with a higher secretory cell distribution on the ventral surface than on the dorsal surface. The epidermis was a single layer composed of epithelial cells, secretory cells, ciliated cells and neuroglial cells. Epithelial cells were columnar with well-developed microvilli on the free surface, and the microvilli were covered with glycocalyx. The epithelial cells were connected to the neighboring cells by tight junctions and membrane interdigitations of the apico-frontal surface. Well-developed microfilaments were arranged in a vertical direction in the cortical cytoplasm. The secretory cells were categorized into three types (A, B and C) in accordance with the light microscopical characteristics and ultrastructures of the secretory granules. The distribution of these cells was in the following order: Type A>Type B>Type C. SEM observation revealed that the secretory pore size of the Type A secretory cells was approximately 8.6 μm×12.2 μm. Cytoplasm displayed a red color as the result of Masson's trichrome stain and H-E stain, and contained polygonal granules of approximately 1.2 μm2 with a high electron density. The secretory pore size of the Type B secretory cells was approximately 10.1 μm×12.1 μm. As the results of AB-PAS (pH 2.5) and AF-AB (pH 2.5) reactions, the cytoplasm displayed a red color. The cells contained membrane bounded secretory granules with very low electron density. The secretory pore of the Type C secretory cells was circular shape, and approximately 5.5 μm×5.5 μm. Cytoplasm was found to be homogeneous under H-E stain and Masson's trichrome stain, and displayed a red color. As the result of AB-PAS (pH 2.5) reaction, the cytoplasm displayed a red color. The electron density of the secretory substance was the highest among the three types of secretory cells. The ciliated cells had a ciliary tuft on the free surface and were distributed throughout the mantle with the exception of the adhesive organs. Neuroglial cells were connected to the basal membrane, epithelial cells, secretory cells and nerve fibers through cytoplasmic process, and contained neurosecretory granules with high electron density within the cytoplasm.
Collapse
Affiliation(s)
- Dong Geun Lee
- Department of Sea Cucumber Research, Jeollanamdo Ocean and Fisheries Science Institute, Jindo 539-802, Republic of Korea
| | - Min Woo Park
- Southwest Sea Fisheries Research Institute, NFRDI, Yeosu 556-823, Republic of Korea
| | - Byeong Hak Kim
- Southwest Sea Fisheries Research Institute, NFRDI, Yeosu 556-823, Republic of Korea
| | - Hyejin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Mi Ae Jeon
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea.
| |
Collapse
|
9
|
von Byern J, Wani R, Schwaha T, Grunwald I, Cyran N. Old and sticky-adhesive mechanisms in the living fossil Nautilus pompilius (Mollusca, Cephalopoda). ZOOLOGY 2012; 115:1-11. [PMID: 22221553 PMCID: PMC3311398 DOI: 10.1016/j.zool.2011.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 11/26/2022]
Abstract
Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction.
Collapse
Affiliation(s)
- Janek von Byern
- Core Facility Cell Imaging and Ultrastructural Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
10
|
von Byern J, Scott R, Griffiths C, Micossi A, Grunwald I, Cyran N. Characterization of the adhesive areas in Sepia tuberculata (Mollusca, Cephalopoda). J Morphol 2011; 272:1245-58. [PMID: 21688295 DOI: 10.1002/jmor.10980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/30/2011] [Accepted: 04/07/2011] [Indexed: 11/11/2022]
Abstract
Adhesion in cephalopods is either mechanical, involving a reduced-pressure system of the arm and tentacle suckers, or is chemically mediated by special adhesive gland structures (as proposed for Euprymna, Idiosepius, and Nautilus). Four species of Sepia (S. typica, S. papillata, S. pulchra, and S. tuberculata) possess grooved structures on the ventral mantle surface and on the fourth arm pair, which are used to attach mechanically to the substratum. Because these areas are often partly covered with sand or debris, it has been hypothesized that chemical substances were involved in this attachment process. This study provides a histochemical and ultrastructural description of the glandular epithelium in the adhesive area of Sepia tuberculata. Two specific glandular cells (Type 1 and Type 2) are present in the epithelium, which differ clearly in their granule size and cellular structure. The aggregation of both cell types and their simultaneous secretion suggest that the secretions of both cell types work synergistically providing a two-component adhesive system which supports the primarily mechanical sucker adhesion by making the arm surface sticky.
Collapse
Affiliation(s)
- Janek von Byern
- University of Vienna, Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructural Research, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
11
|
Dodou D, Breedveld P, de Winter JCF, Dankelman J, van Leeuwen JL. Mechanisms of temporary adhesion in benthic animals. Biol Rev Camb Philos Soc 2011; 86:15-32. [PMID: 20233167 DOI: 10.1111/j.1469-185x.2010.00132.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compared to the biochemical content of the adhesives. We address temporary adhesion of benthic animals from the following three structural levels: (a) the biochemical content of the adhesive secretions, (b) the micro- and mesoscopic surface geometry and material properties of the adhesive organs, and (c) the macroscopic external morphology of the adhesive organs. We show that temporary adhesion of benthic animals is affected by three structural levels: the adhesive secretions provide binding to the substratum at a molecular scale, whereas surface geometry and external morphology increase the contact area with the irregular and unpredictable profile of the substratum from micro- to macroscales. The biochemical content of the adhesive secretions differs between abiotic and biotic substrata. The biochemistry of the adhesives suitable for biotic substrata differentiates further according to whether adhesion must be activated quickly (e.g. as a defensive mechanism) or more slowly (e.g. during adhesion of parasites). De-adhesion is controlled by additional secretions, enzymes, or mechanically. Due to deformability, the adhesive organs achieve intimate contact by adapting their surface profile to the roughness of the substratum. Surface projections, namely cilia, cuticular villi, papillae, and papulae increase the contact area or penetrate through the secreted adhesive to provide direct contact with the substratum. We expect that the same three structural levels investigated here will also affect the performance of artificial adhesive systems.
Collapse
Affiliation(s)
- D Dodou
- Department of BioMechanical Engineering, Delft University of Technology, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
von Byern J, Klepal W. Re-Evaluation of Taxonomic Characters ofIdiosepius(Cephalopoda, Mollusca). MALACOLOGIA 2010. [DOI: 10.4002/040.052.0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|