1
|
Plavec TV, Žagar Soderžnik K, Della Pelle G, Zupančič Š, Vidmar R, Berlec A. Incorporation of recombinant proteins into extracellular vesicles by Lactococcus cremoris. Sci Rep 2025; 15:1768. [PMID: 39815011 PMCID: PMC11736121 DOI: 10.1038/s41598-025-86492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer particles released by various cellular organisms that carry an array of bioactive molecules. EVs have diagnostic potential, as they play a role in intercellular interspecies communication, and could be applied in drug delivery. In contrast to mammalian cell-derived EVs, the study of EVs from bacteria, particularly Gram-positive bacteria, received less research attention. This study aimed to investigate the production of EVs by lactic acid bacterium Lactococcus cremoris NZ9000 and to examine the impact of recombinant protein expression on their formation and protein content. Four different recombinant proteins were expressed in L. cremoris NZ9000, in different forms of expression and combinations, and the produced EVs were isolated using the standard ultracentrifugation method. The presence of vesicular structures (50-200 nm) in the samples was confirmed by transmission electron microscopy and by flow cytometry using membrane-specific stain. Mass spectrometry analyses confirmed the presence of recombinant proteins in the EVs fraction, with amounts ranging from 13.17 to 100%, highlighting their significant incorporation into the vesicles, together with intrinsic L. cremoris NZ9000 proteins that were either more abundant in the cytoplasm (ribosomal proteins, metabolic enzymes) or present in the membrane. The presence of the most abundant lactococcal proteins in EVs fraction suggests that protein cargo-loading of EVs in L. cremoris NZ9000 is not regulated. However, our data suggests that L. cremoris NZ9000 genetically engineered to express recombinant proteins can produce EVs containing these proteins in scalable manner. As L. cremoris NZ9000 is considered safe bacterium, EVs from L. cremoris NZ9000 could have several advantages over EVs from other bacteria, implying possible biotechnological applications, e.g. in therapeutic protein delivery.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Selvam D, D'silva A, Panchapakesan A, Gohil Y, Singh J, Hanna LE, Ranga U. The expression of HIV-1 tat in Lactococcus lactis. Protein Expr Purif 2024; 217:106443. [PMID: 38360084 DOI: 10.1016/j.pep.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Efficient expression of functional proteins in heterologous hosts has become the pivotal focus of modern biotechnology and biomedical research. To this end, multiple alternatives to E. coli are being explored for recombinant protein expression. L. lactis, being a gram-positive organism, circumvents the need for an endotoxin removal step during protein purification. We report here the optimisation of the expression of HIV-1 Tat, a notoriously difficult protein, in Lactococcus lactis system. We evaluated five different promoters in two different Lactococcus lactis strains and examined the effect of pH, glucose, and induction time on the yield and purity of Tat. Finally, the recombinant Tat was functionally competent in transactivating the HIV-1 promoter in HLM-1 reporter cells. Our work provides a scaffold for future work on the expression of toxic proteins in Lactococcus lactis.
Collapse
Affiliation(s)
- Deepak Selvam
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India; National Institute for Research in Tuberculosis, Chennai, India
| | - Anish D'silva
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Arun Panchapakesan
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Yuvrajsinh Gohil
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Jayendra Singh
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | | | - Udaykumar Ranga
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
| |
Collapse
|
3
|
Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci Rep 2023; 43:232386. [PMID: 36597861 PMCID: PMC9842951 DOI: 10.1042/bsr20211299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Synthetic biology has grown exponentially in the last few years, with a variety of biological applications. One of the emerging applications of synthetic biology is to exploit the link between microorganisms, biologics, and human health. To exploit this link, it is critical to select effective synthetic biology tools for use in appropriate microorganisms that would address unmet needs in human health through the development of new game-changing applications and by complementing existing technological capabilities. Lactic acid bacteria (LAB) are considered appropriate chassis organisms that can be genetically engineered for therapeutic and industrial applications. Here, we have reviewed comprehensively various synthetic biology techniques for engineering probiotic LAB strains, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 mediated genome editing, homologous recombination, and recombineering. In addition, we also discussed heterologous protein expression systems used in engineering probiotic LAB. By combining computational biology with genetic engineering, there is a lot of potential to develop next-generation synthetic LAB with capabilities to address bottlenecks in industrial scale-up and complex biologics production. Recently, we started working on Lactochassis project where we aim to develop next generation synthetic LAB for biomedical application.
Collapse
|
4
|
Plavec TV, Ključevšek T, Berlec A. Introduction of Modified BglBrick System in Lactococcus lactis for Straightforward Assembly of Multiple Gene Cassettes. Front Bioeng Biotechnol 2021; 9:797521. [PMID: 34957084 PMCID: PMC8703077 DOI: 10.3389/fbioe.2021.797521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Genetic modification of lactic acid bacteria is an evolving and highly relevant field of research that allows the engineered bacteria to be equipped with the desired functions through the controlled expression of the recombinant protein. Novel genetic engineering techniques offer the advantage of being faster, easier and more efficient in incorporating modifications to the original bacterial strain. Here, we have developed a modified BglBrick system, originally introduced in Escherichia coli and optimized it for the lactic acid bacterium Lactococcus lactis. Six different expression cassettes, encoding model proteins, were assembled in different order as parts of a modified BglBrick system in a novel plasmid pNBBX. All cassettes included nisin promoter, protein encoding gene and transcription terminator. We demonstrated successful intracellular expression of the two fluorescent proteins and display of the four protein binders on the bacterial surface. These were expressed either alone or concomitantly, in combinations of three model proteins. Thus, a modified BglBrick system developed herein enables simple and modular construction of multigene plasmids and controlled simultaneous expression of three proteins in L. lactis.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tim Ključevšek
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Li H, Du X, Yan L, Tang Z, Zhang L, Zheng Q, Zeng X, Chen G, Yue H, Fu X. Low Abundance of Lactococcus lactis in Human Colorectal Cancer Is Associated with Decreased Natural Killer Cells. Nutr Cancer 2021; 74:938-946. [PMID: 34192986 DOI: 10.1080/01635581.2021.1944649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A limited number of studies have demonstrated the role of Lactococcus lactis (L. lactis) in human colorectal cancers (CRCs). The association of L. lactis abundance with the density of natural killer (NK) cells has not been investigated before. In this study, the L. lactis abundance in 60 CRC specimens, 20 adenoma (AD) specimens, and 29 normal colorectal tissues (NCs) specimens was investigated using the fluorescence in situ hybridization of 16S ribosomal RNA. The density of NK cells was detected using immunofluorescence in 28 CRC specimens, 12 AD specimens, and 22 NC specimens. The presence of L. lactis in NCs (48.28%) was detected significantly higher than that in the AD (20.00%, P = .044) and CRC (23.33%, P = .018) specimens. The abundance of L. lactis in NCs (32.73 ± 7.24) was also found to be significantly higher than that in AD (8.91 ± 5.89, P = .029) and CRC (5.63 ± 1.67, P = .003) specimens. In addition, the density of NKp30+ NK cells in NCs (51.14 ± 4.84) was significantly higher than that in the AD (6.10 ± 1.31) and CRC (1.72 ± 0.40) specimens (P < .001). Moreover, a positive association of L. lactis abundance with NKp30+ NK cells density in the colorectal samples (P < .001) was observed. The low abundance of L. lactis in the CRC tissues was associated with the decreased NK cells, which suggested that this might contribute to the progression of CRC by decreasing the number of NK cells.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1944649.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, The Central Hospital of Guangyuan City, Sichuan, China
| | - Xinhao Du
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Li Yan
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Zhenzhen Tang
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Ling Zhang
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Qiao Zheng
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Xianghao Zeng
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Guimei Chen
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Huawen Yue
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Sichuan, China
| |
Collapse
|
6
|
Yang Y, Zhang W, Huan H, Xia W, Chen Y, Wang P, Liu Y. Construction of an Integrated mCherry Red Fluorescent Protein Expression System for Labeling and Tracing in Lactiplantibacillus plantarum WCFS1. Front Microbiol 2021; 12:690270. [PMID: 34239511 PMCID: PMC8258168 DOI: 10.3389/fmicb.2021.690270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Thorough intestinal adhesion and colonization greatly promote the probiotic properties of lactic acid bacteria (LAB). Labeling and tracing with fluorescent proteins are effective and reliable for studying the in vivo physiological activities of LAB including localization, adhesion, and colonization. Lactiplantibacillus plantarum WCFS1 was successfully traced with a red fluorescent protein (RFP), which was expressed by the bacteria-carrying recombinant plasmids. In this study, we aimed to construct a stable RFP mCherry expression system, whose encoding gene was integrated into the bacterial chromosome via double-crossed homologous recombination, and use it for labeling WCFS1 with the goal of avoiding the potential loss of non-chromosomal plasmids along with intestinal growth. First, the constitutive expression of the mCherry protein was improved after adjusting the length of the spacer between the promoter and the gene start codon. Then, the optimized mCherry gene expression cassette was integrated into the chromosome of WCFS1. The resulting strain had normal unimpaired growth and strong fluorescent signals, even after 100 generations, indicating its stability. Furthermore, quantitative polymerase chain reaction (PCR) results revealed a strong positive correlation between the fluorescence intensity of the strain and the number of viable cells, demonstrating its potential usage for the quantification of in vivo WCFS1 cells. Finally, the increased adhesion ability of WCFS1 due to the recombinant expression of the bsh gene was visualized and evaluated using fluorescence intensity, the results of which were consistent with those obtained using the previously established quantification methods. These results suggest that the chromosomal-integrated mCherry labeling system can be extensively used to examine the distribution, colonization, and survival of LAB in vivo in order to determine the mechanism of its probiotic function.
Collapse
Affiliation(s)
- Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wenjun Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hailin Huan
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenxu Xia
- Geneception (Shanghai) Bio-technology Co., Ltd., Shanghai, China
| | - Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peijuan Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yanrong Liu
- Nanjing Institute of Product Quality Inspection, Nanjing, China
| |
Collapse
|
7
|
Garza-Morales R, Rendon BE, Malik MT, Garza-Cabrales JE, Aucouturier A, Bermúdez-Humarán LG, McMasters KM, McNally LR, Gomez-Gutierrez JG. Targeting Melanoma Hypoxia with the Food-Grade Lactic Acid Bacterium Lactococcus Lactis. Cancers (Basel) 2020; 12:cancers12020438. [PMID: 32069844 PMCID: PMC7072195 DOI: 10.3390/cancers12020438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Hypoxia is a feature of the tumor microenvironment that reduces efficacy of immuno- and chemotherapies, resulting in poor clinical outcomes. Lactococcus lactis is a facultative anaerobic gram-positive lactic acid bacterium (LAB) that is Generally Recognized as Safe (GRAS). Recently, the use of LAB as a delivery vehicle has emerged as an alternative strategy to deliver therapeutic molecules; therefore, we investigated whether L. lactis can target and localize within melanoma hypoxic niches. To simulate hypoxic conditions in vitro, melanoma cells A2058, A375 and MeWo were cultured in a chamber with a gas mixture of 5% CO2, 94% N2 and 1% O2. Among the cell lines tested, MeWo cells displayed greater survival rates when compared to A2058 and A375 cells. Co-cultures of L. lactis expressing GFP or mCherry and MeWo cells revealed that L. lactis efficiently express the transgenes under hypoxic conditions. Moreover, multispectral optoacoustic tomography (MSOT), and near infrared (NIR) imaging of tumor-bearing BALB/c mice revealed that the intravenous injection of either L. lactis expressing β-galactosidase (β-gal) or infrared fluorescent protein (IRFP713) results in the establishment of the recombinant bacteria within tumor hypoxic niches. Overall, our data suggest that L. lactis represents an alternative strategy to target and deliver therapeutic molecules into the tumor hypoxic microenvironment.
Collapse
Affiliation(s)
- Rodolfo Garza-Morales
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Beatriz E. Rendon
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Mohammad Tariq Malik
- Department of Microbiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Jeannete E. Garza-Cabrales
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Anne Aucouturier
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (A.A.); (L.G.B.-H.)
| | - Luis G. Bermúdez-Humarán
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (A.A.); (L.G.B.-H.)
| | - Kelly M. McMasters
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Lacey R. McNally
- Department of Bioengineering, Stephenson Cancer Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Jorge G. Gomez-Gutierrez
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
- Correspondence: ; Tel.: +1-(502)-852-5745
| |
Collapse
|
8
|
Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl Microbiol Biotechnol 2019; 103:2053-2066. [DOI: 10.1007/s00253-019-09628-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
9
|
Su X, Lu G, Rehman L, Li X, Sun L, Guo H, Cheng H. mCherry-Labeled Verticillium dahliae Could Be Utilized to Investigate Its Pathogenicity Process in Nicotiana benthamiana. Genes (Basel) 2018; 9:E508. [PMID: 30340423 PMCID: PMC6210675 DOI: 10.3390/genes9100508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022] Open
Abstract
Verticillium dahliae is a soil-borne phytopathogenic fungus that causes a destructive vascular wilt, but details of the molecular mechanism behind its pathogenicity are not very clear. Here, we generated a red fluorescent isolate of V. dahliae by protoplast transformation to explore its pathogenicity mechanism, including colonization, invasion, and extension in Nicotiana benthamiana, using confocal microscopy. The nucleotide sequences of mCherry were optimized for fungal expression and cloned into pCT-HM plasmid, which was inserted into V. dahliae protoplasts. The transformant (Vd-m) shows strong red fluorescence and its phenotype, growth rate, and pathogenicity did not differ significantly from the wild type V. dahliae (Vd-wt). Between one and three days post inoculation (dpi), the Vd-m successfully colonized and invaded epidermal cells of the roots. From four to six dpi, hyphae grew on root wounds and lateral root primordium and entered xylem vessels. From seven to nine dpi, hyphae extended along the surface of the cell wall and massively grew in the xylem vessel of roots. At ten dpi, the Vd-m was found in petioles and veins of leaves. Our results distinctly showed the pathway of V. dahliae infection and colonization in N. benthamiana, and the optimized expression can be used to deepen our understanding of the molecular mechanism of pathogenicity.
Collapse
Affiliation(s)
- Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guoqing Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Latifur Rehman
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Department of Biotechnology, The University of Swabi, Khyber Pakhtunkhwa 23561, Pakistan.
| | - Xiaokang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lu Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China.
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Stable Expression of Modified Green Fluorescent Protein in Group B Streptococci To Enable Visualization in Experimental Systems. Appl Environ Microbiol 2018; 84:AEM.01262-18. [PMID: 30006391 DOI: 10.1128/aem.01262-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a Gram-positive bacterium associated with various diseases in humans and animals. Many studies have examined GBS physiology, virulence, and microbe-host interactions using diverse imaging approaches, including fluorescence microscopy. Strategies to label and visualize GBS using fluorescence biomarkers have been limited to antibody-based methods or nonspecific stains that bind DNA or protein; an effective plasmid-based system to label GBS with a fluorescence biomarker would represent a useful visualization tool. In this study, we developed and validated a green fluorescent protein (GFP)-variant-expressing plasmid, pGU2664, which can be applied as a marker to visualize GBS in experimental studies. The synthetic constitutively active CP25 promoter drives strong and stable expression of the GFPmut3 biomarker in GBS strains carrying pGU2664. GBS maintains GFPmut3 activity at different phases of growth. The application of fluorescence polarization enables easy discrimination of GBS GFPmut3 activity from the autofluorescence of culture media commonly used to grow GBS. Differential interference contrast microscopy, in combination with epifluorescence microscopy to detect GFPmut3 in GBS, enabled visualization of bacterial attachment to live human epithelial cells in real time. Plasmid pGU2664 was also used to visualize phenotypic differences in the adherence of wild-type GBS and an isogenic gene-deficient mutant strain lacking CovR (the control of virulence regulator) in adhesion assays. The system for GFPmut3 expression in GBS described in this study provides a new tool for the visualization of this organism in diverse research applications. We discuss the advantages and consider the limitations of this fluorescent biomarker system developed for GBS.IMPORTANCE Group B streptococcus (GBS) is a bacterium associated with various diseases in humans and animals. This study describes the development of a strategy to label and visualize GBS using a fluorescence biomarker, termed GFPmut3. We show that this biomarker can be successfully applied to track the growth of bacteria in liquid medium, and it enables the detailed visualization of GBS in the context of live human cells in real-time microscopic analysis. The system for GFPmut3 expression in GBS described in this study provides a new tool for the visualization of this organism in diverse research applications.
Collapse
|