1
|
Murphy JD, Shiomitsu K, Milner RJ, Lejeune A, Ossiboff RJ, Gell JC, Axiak-Bechtel S. Characterization of expression and prognostic implications of transforming growth factor beta, programmed death-ligand 1, and T regulatory cells in canine histiocytic sarcoma. Vet Immunol Immunopathol 2023; 257:110560. [PMID: 36804838 DOI: 10.1016/j.vetimm.2023.110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023]
Abstract
Histiocytic sarcoma (HS) is an aggressive malignant neoplasm in dogs. Expression and prognostic significance of transforming growth factor beta (TGF-β), programmed death-ligand 1 (PD-L1), and T regulatory cells (Tregs) in HS is unknown. The goal of this study was to investigate the expression and prognostic significance of TGF-β, PD-L1, and FoxP3/CD25 in canine HS utilizing RNA in situ hybridization (RNAscope®). After validation was performed, RNAscope® on formalin-fixed paraffin-embedded (FFPE) patient HS tissue samples was performed for all targets and expression quantified with HALO® software image analysis. Cox proportional hazard model was conducted to investigate the association between survival time and each variable. Additionally, for categorical data, the Kaplan-Meier product-limit method was used to generate survival curves. TGF-β and PD-L1 mRNA expression was confirmed in the DH82 cell line by reverse transcription polymerase chain reaction (RT-PCR) and CD25 + FoxP3 + cells were detected by flow cytometry in peripheral blood. Once the RNAscope® method was validated, TGF-β H-score and dots/cell and FoxP3 dots/cell were assessed in HS samples and found to be significantly correlated with survival. Moderate positive correlations were found between FoxP3 and PD-L1 H-score, percent staining area, and dots/cell, and FoxP3 and TGF-β dots/cell. In summary, RNAscope® is a valid technique to detect TGF-β and PD-L1 expression and identify Tregs in canine HS FFPE tissues. Furthermore, canine HS expresses TGF-β and PD-L1. Increased TGF-β and FoxP3 correlated with worse prognosis. Prospective studies are warranted to further investigate TGF-β, PD-L1, and Tregs effect on prognosis.
Collapse
Affiliation(s)
- Jacqueline D Murphy
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Keijiro Shiomitsu
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Rowan J Milner
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Amandine Lejeune
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Robert J Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Jessy Castellanos Gell
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Sandra Axiak-Bechtel
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States.
| |
Collapse
|
2
|
Massimini M, Romanucci M, De Maria R, Della Salda L. An Update on Molecular Pathways Regulating Vasculogenic Mimicry in Human Osteosarcoma and Their Role in Canine Oncology. Front Vet Sci 2021; 8:722432. [PMID: 34631854 PMCID: PMC8494780 DOI: 10.3389/fvets.2021.722432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Canine tumors are valuable comparative models for human counterparts, especially to explore novel biomarkers and to understand pathways and processes involved in metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells which promote metastasis. Thus, it represents an opportunity to investigate both the molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant switch. Although this biological process has been largely investigated in different human cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology, where it has been mainly explored in canine mammary tumors. The presence of VM in human osteosarcoma is associated with poor clinical outcome, reduced patient survival, and increased risk of metastasis and it shares the main pathways involved in other type of human tumors. This review illustrates the main findings concerning the VM process in human osteosarcoma, search for the related current knowledge in canine pathology and oncology, and potential involvement of multiple pathways in VM formation, in order to provide a basis for future investigations on VM in canine tumors.
Collapse
|
3
|
Takeuchi H, Konnai S, Maekawa N, Takagi S, Ohta H, Sasaki N, Kim S, Okagawa T, Suzuki Y, Murata S, Ohashi K. Canine Transforming Growth Factor-β Receptor 2-Ig: A Potential Candidate Biologic for Melanoma Treatment That Reverses Transforming Growth Factor-β1 Immunosuppression. Front Vet Sci 2021; 8:656715. [PMID: 34195245 PMCID: PMC8236594 DOI: 10.3389/fvets.2021.656715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
Cancer cells can evade host immune systems via multiple mechanisms. Transforming growth factor beta 1 (TGF-β1) is an immunosuppressive cytokine that induces regulatory T cell (Tregs) differentiation and is involved in immune evasion mechanisms in cancer. The inhibition of the TGF-β1 signaling pathway can suppress cancer progression and metastasis through the modulation of anticancer immune responses. However, to best of our knowledge, no implementation of treatments targeting TGF-β1 has been reported in dog cancers. This study aimed to examine whether TGF-β1 is upregulated in canine cancers. We measured TGF-β1 concentrations in culture supernatants of canine melanoma cell lines and in serum samples from dogs with oral malignant melanoma. TGF-β1 production was observed in several cell lines, and serum TGF-β1 levels were elevated in dogs with oral malignant melanoma. Interestingly, the addition of recombinant TGF-β1 to canine peripheral blood mononuclear cell cultures decreased Th1 cytokine production and increased differentiation of CD4+CD25+Foxp3+ lymphocytes, suggesting that TGF-β1 is immunosuppressive in canine immune systems. We developed a decoy receptor for TGF-β, namely TGF-βRII-Ig, by identifying an open reading frame of the canine TGFBR2 gene. TGF-βRII-Ig was prepared as a recombinant fusion protein of the extracellular region of canine TGF-βRII and the Fc region of canine IgG-B. As expected, TGF-βRII-Ig bound to TGF-β1. In the presence of TGF-β1, the treatment with TGF-βRII-Ig increased Th1 cytokine production and decreased the differentiation of CD4+CD25+Foxp3+ lymphocytes. Our results suggest that TGF-βRII-Ig competitively inhibits the immunosuppressive effects of TGF-β1 and thereby activates immune responses. This study demonstrated the potential of TGF-βRII-Ig as a novel biologic for canine melanoma.
Collapse
Affiliation(s)
- Hiroto Takeuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Takagi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Veterinary Surgery, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hiroshi Ohta
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Noboru Sasaki
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|