1
|
Andrillon A, Chevret S, Lee SM, Biard L. Surv-CRM-12: A Bayesian phase I/II survival CRM for right-censored toxicity endpoints with competing disease progression. Stat Med 2022; 41:5753-5766. [PMID: 36259523 PMCID: PMC9691552 DOI: 10.1002/sim.9591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
The growing interest in new classes of anti-cancer agents, such as molecularly-targeted therapies and immunotherapies with modes of action different from those of cytotoxic chemotherapies, has changed the dose-finding paradigm. In this setting, the observation of late-onset toxicity endpoints may be precluded by treatment and trial discontinuation due to disease progression, defining a competing event to toxicity. Trial designs where dose-finding is modeled in the framework of a survival competing risks model appear particularly well-suited. We aim to provide a phase I/II dose-finding design that allows dose-limiting toxicity (DLT) outcomes to be delayed or unobserved due to competing progression within the possibly long observation window. The proposed design named the Survival-continual reassessment method-12, uses survival models for right-censored DLT and progression endpoints. In this competing risks framework, cause-specific hazards for DLT and progression-free of DLT were considered, with model parameters estimated using Bayesian inference. It aims to identify the optimal dose (OD), by minimizing the cumulative incidence of disease progression, given an acceptable toxicity threshold. In a simulation study, design operating characteristics were evaluated and compared to the TITE-BOIN-ET design and a nonparametric benchmark approach. The performance of the proposed method was consistent with the complexity of scenarios as assessed by the nonparametric benchmark. We found that the proposed design presents satisfying operating characteristics in selecting the OD and safety.
Collapse
Affiliation(s)
- Anaïs Andrillon
- ECSTRRA Team, UMR‐1153Université de Paris, INSERM, AP‐HP, Hôpital Saint LouisParisFrance,Department of BiostatisticsMailman School of Public Health, Columbia UniversityNew YorkNew YorkUSA
| | - Sylvie Chevret
- ECSTRRA Team, UMR‐1153Université de Paris, INSERM, AP‐HP, Hôpital Saint LouisParisFrance
| | - Shing M. Lee
- Department of BiostatisticsMailman School of Public Health, Columbia UniversityNew YorkNew YorkUSA
| | - Lucie Biard
- ECSTRRA Team, UMR‐1153Université de Paris, INSERM, AP‐HP, Hôpital Saint LouisParisFrance
| |
Collapse
|
2
|
Brown SR, Hinsley S, Hall E, Hurt C, Baird RD, Forster M, Scarsbrook AF, Adams RA. A Road Map for Designing Phase I Clinical Trials of Radiotherapy-Novel Agent Combinations. Clin Cancer Res 2022; 28:3639-3651. [PMID: 35552622 PMCID: PMC9433953 DOI: 10.1158/1078-0432.ccr-21-4087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023]
Abstract
Radiotherapy has proven efficacy in a wide range of cancers. There is growing interest in evaluating radiotherapy-novel agent combinations and a drive to initiate this earlier in the clinical development of the novel agent, where the scientific rationale and preclinical evidence for a radiotherapy combination approach are high. Optimal design, delivery, and interpretation of studies are essential. In particular, the design of phase I studies to determine safety and dosing is critical to an efficient development strategy. There is significant interest in early-phase research among scientific and clinical communities over recent years, at a time when the scrutiny of the trial methodology has significantly increased. To enhance trial design, optimize safety, and promote efficient trial conduct, this position paper reviews the current phase I trial design landscape. Key design characteristics extracted from 37 methodology papers were used to define a road map and a design selection process for phase I radiotherapy-novel agent trials. Design selection is based on single- or dual-therapy dose escalation, dose-limiting toxicity categorization, maximum tolerated dose determination, subgroup evaluation, software availability, and design performance. Fifteen of the 37 designs were identified as being immediately accessible and relevant to radiotherapy-novel agent phase I trials. Applied examples of using the road map are presented. Developing these studies is intensive, highlighting the need for funding and statistical input early in the trial development to ensure appropriate design and implementation from the outset. The application of this road map will improve the design of phase I radiotherapy-novel agent combination trials, enabling a more efficient development pathway.
Collapse
Affiliation(s)
- Sarah R. Brown
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom
| | - Samantha Hinsley
- Clinical Trials Unit Glasgow, University of Glasgow, Glasgow, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Chris Hurt
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | | | | | - Andrew F. Scarsbrook
- Radiotherapy Research Group, Leeds Institute of Medical Research at St James's, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Richard A. Adams
- Centre for Trials Research, Cardiff University and Velindre Cancer Centre, Cardiff, United Kingdom
| |
Collapse
|
3
|
Biard L, Lee SM, Cheng B. Seamless phase I/II design for novel anticancer agents with competing disease progression. Stat Med 2021; 40:4568-4581. [PMID: 34213022 PMCID: PMC9202313 DOI: 10.1002/sim.9080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/19/2021] [Accepted: 05/09/2021] [Indexed: 11/08/2022]
Abstract
Molecularly targeted agents and immunotherapies have prolonged administration and complicated toxicity and efficacy profiles requiring longer toxicity observation windows and the inclusion of efficacy information to identify the optimal dose. Methods have been proposed to either jointly model toxicity and efficacy, or for prolonged observation windows. However, it is inappropriate to address these issues individually in the setting of dose-finding because longer toxicity windows increase the risk of patients experiencing disease progression and discontinuing the trial, with progression defining a competing event to toxicity, and progression-free survival being a commonly used efficacy endpoint. No method has been proposed to address this issue in a competing risk framework. We propose a seamless phase I/II design, namely the competing risks continual reassessment method (CR-CRM). Given an observation window, the objective is to recommend doses that minimize the progression probability, among a set of tolerable doses in terms of toxicity risk. In toxicity-centered stage of the design, doses are assigned based on toxicity alone, and in optimization stage of the design, doses are assigned integrating both toxicity and progression information. Design operating characteristics were examined in a simulation study compared with benchmark performances, including sensitivity to time-varying hazards and correlated events. The method performs well in selecting doses with acceptable toxicity risk and minimum progression risk across a wide range of scenarios.
Collapse
Affiliation(s)
- Lucie Biard
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, USA
- Université de Paris, AP-HP, Hôpital Saint Louis, DMU PRISME, INSERM U1153 Team ECSTRRA, Paris, France
| | - Shing M. Lee
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, USA
| | - Bin Cheng
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, USA
| |
Collapse
|
4
|
Manji GA, Van Tine BA, Lee SM, Raufi A, Pellicciotta I, Hirbe AC, Pradhan J, Chen A, Rabadan R, Schwartz GK. Phase 1 study of combination pexidartinib and sirolimus to target tumor associated macrophages in unresectable sarcoma and malignant peripheral nerve sheath tumors. Clin Cancer Res 2021; 27:5519-5527. [PMID: 34321280 DOI: 10.1158/1078-0432.ccr-21-1779] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the safety and tolerability in phase 1 first-in-human combination therapy with pexidartinib, an inhibitor of colony-stimulating factor-1 receptor, and sirolimus, an mTOR inhibitor, to target tumor associated macrophage (TAM) polarization in soft tissue sarcomas (STSs). EXPERIMENTAL DESIGN This multicenter phase 1 study used the time-to-event continual reassessment method (TITE-CRM) to study the combination of sirolimus, doses ranging from 2-6mg, with pexidartinib, doses ranging from 600-1000mg, both provided continuously on a 28 day cycle, in patients with advanced sarcoma. A total of 24 patients (eight MPNST, three tenosynovial giant cell tumor (TGCT), five leiomyosarcoma and eight with other sarcoma subtypes) were enrolled. The median age was 46 years, 56% were male, and 61% had >2 prior lines of therapy. RESULTS The recommended phase 2 dose (RP2D) was 2mg of sirolimus combined with 1000mg of pexidartinib daily. Of the 18 evaluable subjects, five experienced dose-limiting toxicities (2 elevated AST/ALT, 2 elevated sirolimus trough levels, and 1 grade 5 dehydration). Most common grade 2 or higher treatment related adverse events included anemia, fatigue, neutropenia, and lymphopenia. Clinical benefit was observed in 12 out of 18 (67%) evaluable subjects with 3 partial responses (all in TGCT) and 9 stable disease. Tissue staining indicated a decreased proportion of activated M2 macrophages within tumor samples with treatment. CONCLUSIONS Pexidartinib can be safely administered with sirolimus. These findings support further investigation of this combination to determine clinical efficacy. Clinicaltrials.gov identifier NCT02584647.
Collapse
Affiliation(s)
- Gulam A Manji
- Medicine, Division of Hematology and Oncology, Columbia University
| | | | | | | | | | - Angela C Hirbe
- Division of Oncology, Washington University in St. Louis
| | - Jaya Pradhan
- Department of Medicine, Columbia University Irving Medical Center
| | - Andrew Chen
- Vagelos College of Physicians and Surgeons, Columbia University
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center
| | | |
Collapse
|
5
|
Gamalo M. Networked knowledge, combinatorial creativity, and (statistical) innovation. J Biopharm Stat 2021; 31:109-112. [PMID: 33847244 DOI: 10.1080/10543406.2021.1907889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Lee SM, Wages NA, Goodman KA, Lockhart AC. Designing Dose-Finding Phase I Clinical Trials: Top 10 Questions That Should Be Discussed With Your Statistician. JCO Precis Oncol 2021; 5:317-324. [PMID: 34151131 DOI: 10.1200/po.20.00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
In recent years, the landscape in clinical trial development has changed to involve many molecularly targeted agents, immunotherapies, or radiotherapy, as a single agent or in combination. Given their different mechanisms of action and lengths of administration, these agents have different toxicity profiles, which has resulted in numerous challenges when applying traditional designs such as the 3 + 3 design in dose-finding clinical trials. Novel methods have been proposed to address these design challenges such as combinations of therapies or late-onset toxicities. However, their design and implementation require close collaboration between clinicians and statisticians to ensure that the appropriate design is selected to address the aims of the study and that the design assumptions are pertinent to the study drug. The goal of this paper is to provide guidelines for appropriate questions that should be considered early in the design stage to facilitate the interactions between clinical and statistical teams and to improve the design of dose-finding clinical trials for novel anticancer agents.
Collapse
Affiliation(s)
- Shing M Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Nolan A Wages
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - A Craig Lockhart
- Division of Medical Oncology, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL
| |
Collapse
|
7
|
Andrillon A, Chevret S, Lee SM, Biard L. Dose-finding design and benchmark for a right censored endpoint. J Biopharm Stat 2020; 30:948-963. [DOI: 10.1080/10543406.2020.1821702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anaïs Andrillon
- INSERM U1153 Team ECSTRRA, Université De Paris, Paris, France
| | - Sylvie Chevret
- INSERM U1153 Team ECSTRRA, Université De Paris, Paris, France
| | - Shing M Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lucie Biard
- INSERM U1153 Team ECSTRRA, Université De Paris, Paris, France
| |
Collapse
|