1
|
SEIDEMAN TAMAR, GUO HONG. QUANTUM TRANSPORT AND CURRENT-TRIGGERED DYNAMICS IN MOLECULAR TUNNEL JUNCTIONS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633603000616] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The modelling of nanoelectronic systems has been the topic of ever increasing activity for nearly two decades. Yet, new questions, challenges and opportunities continue to emerge. In this article we review theoretical and numerical work on two new developments in the theory of molecular-scale electronics. First we review a density functional theory analysis within the Keldysh non-equilibrium Green function formalism to predict nonlinear charge transport properties of nanoelectronic devices. Next we review a recently developed quantum mechanical formalism of current-triggered nuclear dynamics. Finally we combine these theories to describe from first principles the inelastic current and the consequent molecular dynamics in molecular heterojunctions.
Collapse
Affiliation(s)
- TAMAR SEIDEMAN
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL. 60208-3113, USA
| | - HONG GUO
- Center for the Physics of Materials & Department of Physics, McGill University, Montreal, PQ, Canada H3A 2T8, Canada
| |
Collapse
|
2
|
|