1
|
Liu Q, Jiang Z, Qiu M, Andersen ME, Crabbe MJC, Wang X, Zheng Y, Qu W. Subchronic Exposure to Low-Level Lanthanum, Cerium, and Yttrium Mixtures Altered Cell Cycle and Increased Oxidative Stress Pathways in Human LO-2 Hepatocytes but Did Not Cause Malignant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22002-22013. [PMID: 39629941 DOI: 10.1021/acs.est.4c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Human exposures to rare earth elements are increasing with expanded use in aerospace, precision instruments, and new energy batteries, materials, and fertilizers. Individually these elements have low toxicity, although few investigations have examined the health effects of longer-term mixture exposures. We used the LO-2 cell line to examine the effects of graded exposures to lanthanum, cerium, and yttrium (LCY) mixtures at 1-, 100-, and 1000-fold their human background levels (0.31 μg/L La, 0.25 μg/L Ce, and 0.12 μg/L Y) on cell cycle, oxidative stress, and nuclear factor erythroid-2-related factor (NRF2) pathway biomarkers, assessing responses every 10 passages up to 100 passages. Cell migration, concanavalin A, malignant transformation, and tumorigenesis in nude mice were also examined. Mixed LCY exposures activated oxidative stress and the NRF2 pathway by the 30th passage and increased the proportion of cells in the S phase and cell cycle-specific biomarkers by the 40th passage. LCY exposures did not cause malignant transformation of hepatocytes or induced tumorigenesis in nude mice but enhanced cell proliferation, migration, and agglutination. Importantly, LCY mixtures with longer-term exposure activated the NRF2 pathway and altered the hepatocyte cell cycle at doses far below those used in previous toxicological studies. The consequences of LCY mixtures for public health merit further study.
Collapse
Affiliation(s)
- Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Dalaijamts C, Cichocki JA, Luo YS, Rusyn I, Chiu WA. Quantitative Characterization of Population-Wide Tissue- and Metabolite-Specific Variability in Perchloroethylene Toxicokinetics in Male Mice. Toxicol Sci 2021; 182:168-182. [PMID: 33988684 DOI: 10.1093/toxsci/kfab057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Quantification of interindividual variability is a continuing challenge in risk assessment, particularly for compounds with complex metabolism and multi-organ toxicity. Toxicokinetic variability for perchloroethylene (perc) was previously characterized across 3 mouse strains and in 1 mouse strain with various degrees of liver steatosis. To further characterize the role of genetic variability in toxicokinetics of perc, we applied Bayesian population physiologically based pharmacokinetic (PBPK) modeling to the data on perc and metabolites in blood/plasma and tissues of male mice from 45 inbred strains from the Collaborative Cross (CC) mouse population. After identifying the most influential PBPK parameters based on global sensitivity analysis, we fit the model with a hierarchical Bayesian population analysis using Markov chain Monte Carlo simulation. We found that the data from 3 commonly used strains were not representative of the full range of variability in perc and metabolite blood/plasma and tissue concentrations across the CC population. Using interstrain variability as a surrogate for human interindividual variability, we calculated dose-dependent, chemical-, and tissue-specific toxicokinetic variability factors (TKVFs) as candidate science-based replacements for the default uncertainty factor for human toxicokinetic variability of 100.5. We found that toxicokinetic variability factors for glutathione conjugation metabolites of perc showed the greatest variability, often exceeding the default, whereas those for oxidative metabolites and perc itself were generally less than the default. Overall, we demonstrate how a combination of a population-based mouse model such as the CC with Bayesian population PBPK modeling can reduce uncertainty in human toxicokinetic variability and increase accuracy and precision in quantitative risk assessment.
Collapse
Affiliation(s)
- Chimeddulam Dalaijamts
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Joseph A Cichocki
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
3
|
Kostal J, Plugge H, Raderman W. Quantifying Uncertainty in Ecotoxicological Risk Assessment: MUST, a Modular Uncertainty Scoring Tool. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12262-12270. [PMID: 32845620 DOI: 10.1021/acs.est.0c02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Whether conducting a risk, hazard, or alternatives assessment, one invariably struggles with the task of reconciling multiple available values of toxicological thresholds into a single outcome. When combining multiple pieces of evidence from many different sources, it is important to consider the role of data uncertainty. Uncertainty is inherent to all scientific data. However, in toxicological assessments, controversies and uncertainties are typically understated; they lack methodological transparency; or they poorly integrate qualitative and quantitative sources of information. Similarly, in model development, data curation is rarely performed with sufficient rigor, particularly when applying big data statistics. To overcome the hurdles of a decision process that must reconcile divergent data, we developed an uncertainty scoring tool that can be trained to reproduce specific decision-making paradigms and ensure consistency in the practitioner's judgment across complex scenarios. While designed to aid with ecotoxicological assessments and predictive model development, the tool's applicability extends to any decision-making process that calls for synthesis of incongruent data. Here, we highlight the development process, as well as demonstrate the method's utility in several prototypical ecotoxicological case studies.
Collapse
Affiliation(s)
- Jakub Kostal
- Department of Chemistry, George Washington University, 800 22nd ST NW, Suite 4000, Washington, District of Columbia 20052, United States
| | - Hans Plugge
- Safer Chemical Analytics, Verisk 3E, 4520 East West Highway, Suite 440, Bethesda, Maryland 20814, United States
| | - Will Raderman
- Department of Chemistry, George Washington University, 800 22nd ST NW, Suite 4000, Washington, District of Columbia 20052, United States
| |
Collapse
|
4
|
Dalaijamts C, Cichocki JA, Luo YS, Rusyn I, Chiu WA. Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. Toxicol Appl Pharmacol 2018; 352:142-152. [PMID: 29857080 PMCID: PMC6051410 DOI: 10.1016/j.taap.2018.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Perchloroethylene (perc) induced target organ toxicity has been associated with tissue-specific metabolic pathways. Previous physiologically-based pharmacokinetic (PBPK) modeling of perc accurately predicted oxidative metabolites but suggested the need to better characterize glutathione (GSH) conjugation as well as toxicokinetic uncertainty and variability. OBJECTIVES We updated the previously published "harmonized" perc PBPK model in mice to better characterize GSH conjugation metabolism as well as the uncertainty and variability of perc toxicokinetics. METHODS The updated PBPK model includes expanded models for perc and its oxidative metabolite trichloroacetic acid (TCA), and physiologically-based sub-models for conjugative metabolites. Previously compiled mouse kinetic data in B6C3F1 and Swiss-Webster mice were augmented to include data from a recent study in male C57BL/6J mice that measured perc and metabolites in serum and multiple tissues. Hierarchical Bayesian population analysis using Markov chain Monte Carlo was conducted to characterize uncertainty and inter-strain variability in perc metabolism. RESULTS The updated model fit the data as well or better than the previously published "harmonized" PBPK model. Tissue dosimetry for both oxidative and conjugative metabolites was successfully predicted across the three strains of mice, with estimated residuals errors of 2-fold for majority of data. Inter-strain variability across three strains was evident for oxidative metabolism; GSH conjugation data were only available for one strain. CONCLUSIONS This updated PBPK model fills a critical data gap in quantitative risk assessment by predicting the internal dosimetry of perc and its oxidative and GSH conjugation metabolites and lays the groundwork for future studies to better characterize toxicokinetic variability.
Collapse
Affiliation(s)
- Chimeddulam Dalaijamts
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Joseph A Cichocki
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Simon TW, Zhu Y, Dourson ML, Beck NB. Bayesian methods for uncertainty factor application for derivation of reference values. Regul Toxicol Pharmacol 2016; 80:9-24. [DOI: 10.1016/j.yrtph.2016.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/03/2016] [Accepted: 05/16/2016] [Indexed: 12/17/2022]
|
6
|
Ray PD, Yosim A, Fry RC. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet 2014; 5:201. [PMID: 25076963 PMCID: PMC4100550 DOI: 10.3389/fgene.2014.00201] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022] Open
Abstract
Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are alterations to an individual's genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed.
Collapse
Affiliation(s)
- Paul D. Ray
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
- Curriculum in Toxicology, School of Medicine, University of North CarolinaChapel Hill, NC, USA
| | - Andrew Yosim
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
- Curriculum in Toxicology, School of Medicine, University of North CarolinaChapel Hill, NC, USA
| |
Collapse
|
7
|
Chiu WA, Campbell JL, Clewell HJ, Zhou YH, Wright FA, Guyton KZ, Rusyn I. Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:456-63. [PMID: 24518055 PMCID: PMC4014769 DOI: 10.1289/ehp.1307623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/10/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. OBJECTIVES We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. METHODS We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. RESULTS Concentration-time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. CONCLUSIONS Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability.
Collapse
Affiliation(s)
- Weihsueh A Chiu
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Jennings AA. Analysis of worldwide Regulatory Guidance Values for less frequently regulated elemental surface soil contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:561-585. [PMID: 23835520 DOI: 10.1016/j.jenvman.2013.05.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/08/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
Guidance values are used to regulate exposure to surface soil contamination. In the United States, element guidance values have been promulgated by at least 6 federal agencies, 46 states, and several regional, city, county, territorial, and autonomous Native American jurisdictions. Guidance values have also been promulgated in at least 74 other United Nations member states. A companion manuscript examined the values applied to the eight most frequently regulated elements (Pb, Cd, As, Ni, Cr, Hg, Cu, and Zn) each for which there are at least 300 guidance values. This manuscript extends analysis to the second tier of contaminants (Sb, Ba, Be, Co, F, Mn, Mo, Se, Ag, Tl, Sn, and V) each for which there are at least 100 guidance values. These values span from 3.4 (for Sn) to 6.1 (for Be) orders of magnitude. Their distributions resemble those of lognormal random variables, but also contain non-random value clusters. On average, with the exception of cobalt, the values used in the U.S. are higher (less conservative) than those used elsewhere. Only about 44% of U.S. values and 31% of all values fall within uncertainty bounds computed for the U.S. Environmental Protection Agency health risk model applied to the elements considered.
Collapse
Affiliation(s)
- Aaron A Jennings
- Case Western Reserve University, Department of Civil Engineering, 10900 Euclid Ave., Cleveland, OH 44106-7201, USA.
| |
Collapse
|
9
|
Prediction of acute mammalian toxicity using QSAR methods: a case study of sulfur mustard and its breakdown products. Molecules 2012; 17:8982-9001. [PMID: 22842643 PMCID: PMC6269063 DOI: 10.3390/molecules17088982] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 11/17/2022] Open
Abstract
Predicting toxicity quantitatively, using Quantitative Structure Activity Relationships (QSAR), has matured over recent years to the point that the predictions can be used to help identify missing comparison values in a substance's database. In this manuscript we investigate using the lethal dose that kills fifty percent of a test population (LD₅₀) for determining relative toxicity of a number of substances. In general, the smaller the LD₅₀ value, the more toxic the chemical, and the larger the LD₅₀ value, the lower the toxicity. When systemic toxicity and other specific toxicity data are unavailable for the chemical(s) of interest, during emergency responses, LD₅₀ values may be employed to determine the relative toxicity of a series of chemicals. In the present study, a group of chemical warfare agents and their breakdown products have been evaluated using four available rat oral QSAR LD₅₀ models. The QSAR analysis shows that the breakdown products of Sulfur Mustard (HD) are predicted to be less toxic than the parent compound as well as other known breakdown products that have known toxicities. The QSAR estimated break down products LD₅₀ values ranged from 299 mg/kg to 5,764 mg/kg. This evaluation allows for the ranking and toxicity estimation of compounds for which little toxicity information existed; thus leading to better risk decision making in the field.
Collapse
|
10
|
Jennings AA. Worldwide regulatory guidance values for surface soil exposure to noncarcinogenic polycyclic aromatic hydrocarbons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 101:173-190. [PMID: 22446072 DOI: 10.1016/j.jenvman.2012.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 05/31/2023]
Abstract
Regulatory guidance values are used worldwide to control residential exposures to surface soil contamination. A total of 1791 values used in 39 nations to control exposures to eight polycyclic aromatic hydrocarbons (PAH) not normally considered to be carcinogenic (acenaphthene, acenaphthylene, anthracene, benzo(g,h,i)perylene, fluroanthene, fluorene, phenanthrene and pyrene) are examined. The guidance values vary over 5.8 to 8.3 orders of magnitude and have distributions that strongly resemble distributions of lognormal random variables. Where the U.S. Environmental Protection Agency (USEPA) has provided values, they fall near the upper end of the distributions and appear to exert influence on values from other U.S. jurisdictions. Approximately 84% of all U.S. values fall above a median PAH value. Uncertainty bounds approximated from the USEPA risk model encompass 28% of the regulatory values and these are predominantly from U.S. jurisdictions. An unusually high degree of toxicology data uncertainty for these PAH appears to be a significant factor influencing variability. The USEPA assigns its highest toxicology uncertainty factor value of 3000 to these components.
Collapse
Affiliation(s)
- Aaron A Jennings
- Case Western Reserve University, Department of Civil Engineering, 2104 Adelbert Rd., Cleveland, OH 44106-7201, USA.
| |
Collapse
|
11
|
Zarn JA, Engeli BE, Schlatter JR. Study parameters influencing NOAEL and LOAEL in toxicity feeding studies for pesticides: Exposure duration versus dose decrement, dose spacing, group size and chemical class. Regul Toxicol Pharmacol 2011; 61:243-50. [DOI: 10.1016/j.yrtph.2011.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/31/2011] [Accepted: 08/13/2011] [Indexed: 11/24/2022]
|
12
|
Belkebir E, Rousselle C, Duboudin C, Bodin L, Bonvallot N. Haber's rule duration adjustments should not be used systematically for risk assessment in public health decision-making. Toxicol Lett 2011; 204:148-55. [DOI: 10.1016/j.toxlet.2011.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/21/2011] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
|
13
|
Prenatal developmental toxicity of decabromodiphenyl ethane in the rat and rabbit. ACTA ACUST UNITED AC 2010; 89:139-46. [PMID: 20437473 DOI: 10.1002/bdrb.20237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The potential embryotoxic and teratogenic effects of decabromodiphenyl ethane (DBDPEthane; CASRN 84852-53-9) were evaluated in prenatal developmental studies using rats and rabbits and performed in accordance with international guidelines and Good Laboratory Practice standards. Preliminary dose-range-finding studies were conducted, which indicated doses up to 1,250 mg/kg-day were well tolerated by both rats and rabbits. METHODS For the developmental studies, animals were administered DBDPEthane via gavage at dosage levels of 0, 125, 400, or 1,250 mg/kg-day from gestation day (GD) 6 through 15 for rats and GDs 6 through 18 for rabbits. All female rats and rabbits were sacrificed on GD 20 or GD 29, respectively, and subjected to cesarean section. Fetuses were individually weighed, sexed, and examined for external, visceral and skeletal abnormalities. RESULTS No treatment-related mortality, abortions, or clinical signs of toxicity were observed during the study. Body weights, body weight gain, and food consumption were not affected by treatment. No significant internal abnormalities were observed in either species on necropsy. Cesarean section parameters were comparable between control and treated groups. No treatment-induced malformations or developmental variations occurred. CONCLUSIONS Based on these results, no evidence of maternal toxicity, developmental toxicity, or teratogenicity was observed in rats or rabbits treated with DBDPEthane at dosage levels up to 1,250 mg/kg-day.
Collapse
|
14
|
Hardy ML, Banasik M, Stedeford T. Toxicology and human health assessment of decabromodiphenyl ether. Crit Rev Toxicol 2009; 39:1-75. [DOI: 10.3109/10408440903279946] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|