1
|
Jasem odhaib A, Pirsa S, Mohtarami F. Biodegradable film based on barley sprout powder/pectin modified with quercetin and V 2O 5 nanoparticles: Investigation of physicochemical and structural properties. Heliyon 2024; 10:e25448. [PMID: 38356559 PMCID: PMC10865241 DOI: 10.1016/j.heliyon.2024.e25448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, barley sprout powder/pectin (BS/Pec) composite film was prepared. Quercetin (Qu) and vanadium oxide (V2O5) nanoparticles were used to improve the physicochemical and structural characteristics of the film. The structural, physicochemical and thermal properties of the films were investigated by various techniques such as TGA, SEM, XRD, FTIR, texture analysis, etc. The thickness and tensile strength of the films increased from 120 μm to 2.4 MPa to 220 μm and 6 MPa respectively with the increase of V2O5 nanoparticles and quercetin pigment. Nanoparticles of V2O5 and quercetin decreased the moisture content of the film from 50% to 20%. Quercetin had little effect in reducing water vapor permeability (WVP), but V2O5 nanoparticles had a significant effect in reducing WVP. The pure BS/Pec film had almost 30% antioxidant properties, which increased to 81% with the increase of quercetin. Adding quercetin and V2O5 nanoparticles to the film increased the antimicrobial properties of the film against both Escherichia coli and Staphylococcus aureus bacteria. The SEM images showed the inhomogeneous surface of the BS/Pec film caused by BS powder fibers. The interactions between the components of the films (electrostatic type) was confirmed by FTIR results. The degradation temperature of the overall structure of the film in the presence of nanoparticles indicated the positive effect of nanoparticles in increasing the thermal resistance of the film. Investigating the crystal structure of the film showed that the BS/Pec film has an amorphous/crystalline or semi-crystalline structure. Considering that the prepared film has good mechanical properties and as well as antioxidant/antimicrobial properties, this film as an active composite can be used in food products packaging.
Collapse
Affiliation(s)
- Alaa Jasem odhaib
- Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sajad Pirsa
- Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Forogh Mohtarami
- Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Momeni S, Ramezani AM, Talebi S, Nabipour I. Synthesis of intrinsic fluorescent dopamine/quercetin copolymer nanoparticles and their application as a dual-mode assay for detection of quercetin. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
3
|
Ayran M, Karabulut H, Deniz KI, Akcanli GC, Ulag S, Croitoru AM, Tihăuan BM, Sahin A, Ficai D, Gunduz O, Ficai A. Electrically Triggered Quercetin Release from Polycaprolactone/Bismuth Ferrite Microfibrous Scaffold for Skeletal Muscle Tissue. Pharmaceutics 2023; 15:pharmaceutics15030920. [PMID: 36986781 PMCID: PMC10056538 DOI: 10.3390/pharmaceutics15030920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Skeletal muscle tissue engineering presents a promising avenue to address the limitations pertaining to the regenerative potential of stem cells in case of injury or damage. The objective of this research was to evaluate the effects of utilizing novel microfibrous scaffolds, containing the compound quercetin (Q), on skeletal muscle regeneration. Morphological test results showed us that the combination of bismuth ferrite (BFO), polycaprolactone (PCL), and Q were bonded and well-ordered with each other, and a uniform microfibrous structure was obtained. Antimicrobial susceptibility testing of PCL/BFO/Q was conducted, and microbial reduction was found to be over 90% in the highest concentration of Q-loaded microfibrous scaffolds with the most inhibitory effect on S. aureus strains. Further, biocompatibility was investigated by performing MTT testing, fluorescence testing, and SEM imaging on mesenchymal stem cells (MSCs) to determine whether they could act as suitable microfibrous scaffolds for skeletal muscle tissue engineering. Incremental changes in the concentration of Q led to increased strength and strain, allowing muscles to withstand stretching during the healing process. In addition, electrically conductive microfibrous scaffolds enhanced the drug release capability by revealing that Q can be released significantly more quickly by applying the appropriate electric field, compared with conventional drug-release techniques. These findings suggest a possible use for PCL/BFO/Q microfibrous scaffolds in skeletal muscle regeneration by demonstrating that the combined action of both guidance biomaterials was more successful than Q itself acting alone.
Collapse
Affiliation(s)
- Musa Ayran
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Hatice Karabulut
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Kudret Irem Deniz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gamze Ceren Akcanli
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Bianca-Maria Tihăuan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, 050567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Calugareni, Romania
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
- Correspondence:
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050044 Bucharest, Romania
| |
Collapse
|
4
|
Polymeric Forms of Plant Flavonoids Obtained by Enzymatic Reactions. Molecules 2022; 27:molecules27123702. [PMID: 35744827 PMCID: PMC9228980 DOI: 10.3390/molecules27123702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Naringenin is one of the flavonoids originating from citrus fruit. This polyphenol is mainly found in grapefruit, orange and lemon. The antioxidant and antimicrobial properties of flavonoids depend on their structure, including the polymeric form. The aim of this research was to achieve enzymatic polymerization of naringenin and to study the properties of poly(naringenin). The polymerization was performed by methods using two different enzymes, i.e., laccase and horseradish peroxidase (HRP). According to the literature data, naringenin had not been polymerized previously using the enzymatic polymerization method. Therefore, obtaining polymeric naringenin by reaction with enzymes is a scientific novelty. The research methodology included analysis of the structure of poly(naringenin) by NMR, GPC, FTIR and UV-Vis and its morphology by SEM, as well as analysis of its properties, i.e., thermal stability (DSC and TGA), antioxidant activity (ABTS, DPPH, FRAP and CUPRAC) and antimicrobial properties. Naringenin oligomers were obtained as a result of polymerization with two types of enzymes. The polymeric forms of naringenin were more resistant to thermo-oxidation; the final oxidation temperature To of naringenin catalyzed by laccase (poly(naringenin)-laccase) was 28.2 °C higher, and poly(naringenin)-HRP 23.6 °C higher than that of the basic flavonoid. Additionally, due to the higher molar mass and associated increase in OH groups in the structure, naringenin catalyzed by laccase (poly(naringenin)-laccase) showed better activity for scavenging ABTS+• radicals than naringenin catalyzed by HRP (poly(naringenin)-HRP) and naringenin. In addition, poly(naringenin)-laccase at a concentration of 5 mg/mL exhibited better microbial activity against E. coli than monomeric naringenin.
Collapse
|
5
|
Lin HY, Zeng YT, Lin CJ, Harroun SG, Anand A, Chang L, Wu CJ, Lin HJ, Huang CC. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. J Colloid Interface Sci 2022; 622:481-493. [PMID: 35525149 DOI: 10.1016/j.jcis.2022.04.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Inflenza A viruses (IAVs) are highly transmissible and pathogenic Orthomyxoviruses, which have led to worldwide outbreaks and seasonal pandemics of acute respiratory diseases, causing serious threats to public health. Currently used anti-influenza drugs may cause neurological side effects, and they are increasingly less effective against mutant strains. To help prevent the spread of IAVs, in this work, we have developed quercetin-derived carbonized nanogels (CNGsQur) that display potent viral inhibitory, antioxidative, and anti-inflammatory activities. The antiviral CNGsQur were synthesized by mild carbonization of quercetin (Qur), which successfully preserved their antioxidative and anti-inflammatory properties while also contributed enhanced properties, such as water solubility, viral binding, and biocompatibility. Antiviral assays of co-treatment, pre-treatment, and post-treatment indicate that CNGsQur interacts with the virion, revealing that the major antiviral mechanism resulting in the inhibition of the virus is by their attachment on the cell surface. Among them, the selectivity index (SI) of CNGsQur270 (>857.1) clearly indicated its great potential for clinical application in IAVs inhibition, which was much higher than that of pristine quercetin (63.7) and other clinical drugs (4-81). Compared with quercetin at the same dose, the combined effects of viral inhibition, antioxidative and anti-inflammatory activities impart the superior therapeutic effects of CNGsQur270 aerosol inhalation in the treatment of IAVs infection, as evidenced by a mouse model. These CNGsQur effectively prevent the spread of IAVs and suppress virus-induced inflammation while also exhibiting good in vivo biocompatibility. CNGsQur shows much promise as a clinical therapeutic agent against infection by IVAs.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Ting Zeng
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Lung Chang
- Department of Pediatrics, Nursing and Management, Mackay Memorial Hospital and Mackay Junior College of Medicine, Taipei 10449, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
6
|
Pech-Cohuo SC, Martín-López H, Uribe-Calderón J, González-Canché NG, Salgado-Tránsito I, May-Pat A, Cuevas-Bernardino JC, Ayora-Talavera T, Cervantes-Uc JM, Pacheco N. Physicochemical, Mechanical, and Structural Properties of Bio-Active Films Based on Biological-Chemical Chitosan, a Novel Ramon ( Brosimum alicastrum) Starch, and Quercetin. Polymers (Basel) 2022; 14:polym14071346. [PMID: 35406220 PMCID: PMC9002764 DOI: 10.3390/polym14071346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
The properties of biological-chemical chitosan (BCh) films from marine-industrial waste and a non-conventional Ramon starch (RS) (Brosimum alicastrum) were investigated. Blended films of BCh/RS were prepared to a volume ratio of 4:1 and 1:4, named (BChRS-80+q, biological-chemical chitosan 80% v/v and Ramon starch, BChRS-20+q, biological-chemical chitosan 20% v/v and Ramon starch, both with quercetin), Films from commercial chitosan (CCh) and corn starch (CS), alone or blended (CChCS-80+q, commercial chitosan 80% v/v and corn starch, CChCS-20+q commercial chitosan 20% v/v and corn starch, both with quercetin) were also prepared for comparison purposes. Films were investigated for their physicochemical characteristics such as thickness, moisture, swelling, water-vapor permeability, and water solubility. In addition, their mechanical and structural properties were studied using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA) and Scanning Electron Microscopy (SEM) techniques. Antioxidant activity was evaluated as radical scavenging, and antimicrobial effect was also determined. The BCh and RS films presented similar tensile strength values compared with commercial biopolymers. Only films with chitosan presented antioxidant and antimicrobial activity. The FTIR spectra confirmed the interactions between functional groups of the biopolymers. Although, BChRS-80+q and BChRS-20+q films exhibited poor mechanical performance compared to their commercial counterparts, they showed good thermal stability, and improved antioxidant and antimicrobial activity in the presence of quercetin. BChRS-80+q and BChRS-20+q films have promising applications due to their biological activity and mechanical properties, based on a novel material that has been underutilized (Ramon starch) that does not compete with materials for human feeding and may be used as a coating for food products.
Collapse
Affiliation(s)
- Soledad Cecilia Pech-Cohuo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco CIATEJ, A.C. Subsede Sureste, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico; (S.C.P.-C.); (H.M.-L.); (T.A.-T.)
| | - Héctor Martín-López
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco CIATEJ, A.C. Subsede Sureste, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico; (S.C.P.-C.); (H.M.-L.); (T.A.-T.)
| | - Jorge Uribe-Calderón
- Centro de Investigacion Cientifica de Yucatan, Unidad de Materiales, Mérida 97205, Yucatán, Mexico; (J.U.-C.); (A.M.-P.); (J.M.C.-U.)
| | - Nancy Guadalupe González-Canché
- Centro de Investigaciones en Óptica, Unidad de Aguascalientes, Prol. Constitución 607, Aguascalientes 20200, Aguascalientes, Mexico; (N.G.G.-C.); (I.S.-T.)
| | - Iván Salgado-Tránsito
- Centro de Investigaciones en Óptica, Unidad de Aguascalientes, Prol. Constitución 607, Aguascalientes 20200, Aguascalientes, Mexico; (N.G.G.-C.); (I.S.-T.)
| | - Alejandro May-Pat
- Centro de Investigacion Cientifica de Yucatan, Unidad de Materiales, Mérida 97205, Yucatán, Mexico; (J.U.-C.); (A.M.-P.); (J.M.C.-U.)
| | - Juan Carlos Cuevas-Bernardino
- CONACYT—Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico;
| | - Teresa Ayora-Talavera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco CIATEJ, A.C. Subsede Sureste, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico; (S.C.P.-C.); (H.M.-L.); (T.A.-T.)
| | - José Manuel Cervantes-Uc
- Centro de Investigacion Cientifica de Yucatan, Unidad de Materiales, Mérida 97205, Yucatán, Mexico; (J.U.-C.); (A.M.-P.); (J.M.C.-U.)
| | - Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco CIATEJ, A.C. Subsede Sureste, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico; (S.C.P.-C.); (H.M.-L.); (T.A.-T.)
- Correspondence:
| |
Collapse
|
7
|
Vilchez A, Acevedo F, Cea M, Seeger M, Navia R. Development and thermochemical characterization of an antioxidant material based on polyhydroxybutyrate electrospun microfibers. Int J Biol Macromol 2021; 183:772-780. [PMID: 33965478 DOI: 10.1016/j.ijbiomac.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
The use of antioxidants such as curcumin (Cur) or quercetin (Que) in biomedical and biotechnological applications has been studied owing to their capability to prevent oxidative stress and inhibit free radicals. Using polyhydroxybutyrate (PHB) electrospun fibers is presented as a proper option to encapsulate curcumin and quercetin due to its biocompatibility and biodegradability characteristics. Electrospun fibers were obtained dissolving commercial PHB in chloroform:N,N-dimethylformamide (DMF) (4:1) at 7% m/V, and adding two different concentrations of antioxidant (Cur, and Que) 1%m/m, and 7% m/m. These polymeric solutions were electrospun at different conditions and the obtained fibers were characterized by scanning electron microscopy (SEM), thermogravimetric (TGA) analysis, and Fourier transform infrared spectroscopy (FT-IR). The curcumin and quercetin releases into phosphate buffer saline (PBS) at pH 7.4 were obtained in vitro and measured by spectrophotometry. Antioxidant activities were measured by spectrophotometry in a microplate reader using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Fibers obtained with different formulations presented a chemical composition in accordance with PHB according to FTIR spectra, the diameters fluctuate between 0.761 ± 0.123 and 1.803 ± 0.557 μm, with qualities over 0.95 according to their morphology, and the melting temperature resulted near 178 °C according to the bibliography. The crystallinity of fibers decreases while curcumin or quercetin concentration increases for the studied interval, indeed, quercetin showed a higher impact on the relative crystallinity of fibers. Antioxidant activity of active compounds is maintained after encapsulation in PHB electrospun fibers, and quercetin resulted in near four times antioxidant activity compared to curcumin according to DPPH analysis.
Collapse
Affiliation(s)
- Ariel Vilchez
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Mara Cea
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología (CBDAL), Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Rodrigo Navia
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Centre for Biotechnology and Bioengineering (CeBiB), Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
8
|
Latos-Brozio M, Masek A, Piotrowska M. Thermally Stable and Antimicrobial Active Poly(Catechin) Obtained by Reaction with a Cross-Linking Agent. Biomolecules 2020; 11:biom11010050. [PMID: 33396558 PMCID: PMC7823284 DOI: 10.3390/biom11010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 01/20/2023] Open
Abstract
(+)-Catechin is a flavonoid with valuable antioxidant and antimicrobial properties, found in significant amounts in green tea leaves. Polymeric forms of catechin have been obtained by enzymatic reaction, photopolymerization, and polycondensation in designed processes. However, so far, poly(catechin) has not been received in the cross-linking reaction. Reactions with the cross-linking compound allowed for the preparation of antibacterial and antioxidant materials based on quercetin and rutin. The aim of the research was to obtain, for the first time, poly(catechin) by reaction with glycerol diglycide ether cross-linking compound. The polymeric form of (+)-catechin was confirmed using FTIR and UV-Vis spectroscopy. In addition, thermal analysis (TG and DSC) of the polymeric catechin was performed. The antioxidant and antibacterial activity of poly (flavonoid) was also analyzed. Poly(catechin) was characterized by greater resistance to oxidation, better thermal stability and the ability to reduce transition metal ions than (+)-catechin. In addition, the polymeric catechin had an antimicrobial activity against Staphylococcus aureus stronger than the monomer, and an antifungal activity against Aspergillus niger comparable to that of (+)-catechin. The material made on the basis of (+)-catechin can potentially be used as a pro-ecological stabilizer and functional additive, e.g., for polymeric materials as well as dressing materials in medicine.
Collapse
Affiliation(s)
- Malgorzata Latos-Brozio
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland;
| | - Anna Masek
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-631-32-93-X
| | - Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 71/173, 90-924 Lodz, Poland;
| |
Collapse
|
9
|
Aslam S, Jahan N, Rehman KU, Asi MR. Development of sodium lauryl sulphate stabilized nanosuspension of Coriandrum sativum to enhance its oral bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Parhi B, Bharatiya D, Swain SK. Application of quercetin flavonoid based hybrid nanocomposites: A review. Saudi Pharm J 2020; 28:1719-1732. [PMID: 33424263 PMCID: PMC7783214 DOI: 10.1016/j.jsps.2020.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Natural bioflavonoids are an essential component of dietary supplements possessing antimicrobial properties. Many of the bioflavonoids have resulted in positive antitumor, anticancer, antibacterial, antifungal, anti-inflammatory properties, but the efficacy remains low due to toxicity at the molecular level whereas antiviral property limits to negative. The synergistic link between nanoscience and flavonoid chemistry enhances the epidemiological properties of flavonoid and also diminish the antimicrobial resistivity (AMR) by forming their hybrid nanocomposites. Nanochemistry uses various nanocomposite and nanomaterials for biosensing the flavonoids and their delivery as a drug. The quercetin flavonoid and its derivatives such as rutin, and myricetin are used for sensing and drug delivery. Quercetin with 15Carbon-5Hydroxyl chemical scaffold has been explored for a few decades for the development of hybrid nanocomposite and nanomaterial with metallic as well as organic nano co-composites. This quercetin flavonoid based hybrid nanocomposites seemed to show a significant effect on In vitro and some animal model processes along with attenuating lipid peroxidation, platelet aggregation, and capillary permeability actions. This review mainly focused on the hybrid nanoscience of quercetin bioflavonoid and its application in numerous biological, material fields with a future perspective.
Collapse
Affiliation(s)
- Biswajit Parhi
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, India
| | - Debasrita Bharatiya
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, India
| |
Collapse
|
11
|
de Matos AM, Blázquez-Sánchez MT, Bento-Oliveira A, de Almeida RFM, Nunes R, Lopes PEM, Machuqueiro M, Cristóvão JS, Gomes CM, Souza CS, El Idrissi IG, Colabufo NA, Diniz A, Marcelo F, Oliveira MC, López Ó, Fernandez-Bolaños JG, Dätwyler P, Ernst B, Ning K, Garwood C, Chen B, Rauter AP. Glucosylpolyphenols as Inhibitors of Aβ-Induced Fyn Kinase Activation and Tau Phosphorylation: Synthesis, Membrane Permeability, and Exploratory Target Assessment within the Scope of Type 2 Diabetes and Alzheimer's Disease. J Med Chem 2020; 63:11663-11690. [PMID: 32959649 DOI: 10.1021/acs.jmedchem.0c00841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the rapidly increasing number of patients suffering from type 2 diabetes, Alzheimer's disease, and diabetes-induced dementia, there are no disease-modifying therapies that are able to prevent or block disease progress. In this work, we investigate the potential of nature-inspired glucosylpolyphenols against relevant targets, including islet amyloid polypeptide, glucosidases, and cholinesterases. Moreover, with the premise of Fyn kinase as a paradigm-shifting target in Alzheimer's drug discovery, we explore glucosylpolyphenols as blockers of Aβ-induced Fyn kinase activation while looking into downstream effects leading to Tau hyperphosphorylation. Several compounds inhibit Aβ-induced Fyn kinase activation and decrease pTau levels at 10 μM concentration, particularly the per-O-methylated glucosylacetophloroglucinol and the 4-glucosylcatechol dibenzoate, the latter inhibiting also butyrylcholinesterase and β-glucosidase. Both compounds are nontoxic with ideal pharmacokinetic properties for further development. This work ultimately highlights the multitarget nature, fine structural tuning capacity, and valuable therapeutic significance of glucosylpolyphenols in the context of these metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ana M de Matos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - M Teresa Blázquez-Sánchez
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rafael Nunes
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal.,Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Pedro E M Lopes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Miguel Machuqueiro
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Cleide S Souza
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Imane G El Idrissi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Ana Diniz
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - M Conceição Oliveira
- Mass Spectrometry Facility at CQE, Insituto Superior Técnico, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Sevilla E-41071, Spain
| | - José G Fernandez-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Sevilla E-41071, Spain
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel CH-4056, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel CH-4056, Switzerland
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Claire Garwood
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Beining Chen
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Amélia P Rauter
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| |
Collapse
|
12
|
Gutierrez AM, Bhandari R, Weng J, Stromberg A, Dziubla TD, Hilt JZ. Synthesis of magnetic nanocomposite microparticles for binding of chlorinated organics in contaminated water sources. J Appl Polym Sci 2020; 137:49109. [PMID: 34305166 PMCID: PMC8300995 DOI: 10.1002/app.49109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
In this work, the development of novel magnetic nanocomposite microparticles (MNMs) via free radical polymerization for their application in the remediation of contaminated water is presented. Acrylated plant-based polyphenols, curcumin multiacrylate (CMA) and quercetin multiacrylate (QMA), were incorporated as functional monomers to create high affinity binding sites for the capture of polychlorinated biphenyls (PCBs), as a model pollutant. The MNMs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, dynamic light scattering, and UV-visible spectroscopy. The affinity of these novel materials for PCB 126 was evaluated and fitted to the nonlinear Langmuir model to determine binding affinities (K D). The results suggest the presence of the polyphenolic moieties enhances the binding affinity for PCB 126, with K D values comparable to that of antibodies. This demonstrates that these nanocomposite materials have promising potential as environmental remediation adsorbents for harmful contaminants.
Collapse
Affiliation(s)
- Angela M. Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
- Superfund Research Center, University of Kentucky, Lexington, Kentucky
| | - Rohit Bhandari
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
- Superfund Research Center, University of Kentucky, Lexington, Kentucky
| | - Jiaying Weng
- Superfund Research Center, University of Kentucky, Lexington, Kentucky
- Department of Statistics, University of Kentucky, Lexington, Kentucky
| | - Arnold Stromberg
- Superfund Research Center, University of Kentucky, Lexington, Kentucky
- Department of Statistics, University of Kentucky, Lexington, Kentucky
| | - Thomas D. Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
- Superfund Research Center, University of Kentucky, Lexington, Kentucky
| | - J. Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
- Superfund Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
13
|
Xie P, Fan L, Huang L, Zhang C. Oxidative polymerization of hydroxytyrosol catalyzed by laccase, tyrosinase or horseradish peroxidase: influencing factors and molecular simulations. J Biomol Struct Dyn 2020; 39:5486-5497. [DOI: 10.1080/07391102.2020.1801512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pujun Xie
- Institute of New Technology of Forestry, Chinese Academy of Forestry, Beijing, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| | - Linlin Fan
- Institute of Agro-product Processing, JAAS, Nanjing, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| |
Collapse
|
14
|
David L, Moldovan B, Baldea I, Olteanu D, Bolfa P, Clichici S, Filip GA. Modulatory effects of Cornus sanguinea L. mediated green synthesized silver nanoparticles on oxidative stress, COX-2/NOS2 and NFkB/pNFkB expressions in experimental inflammation in Wistar rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110709. [PMID: 32204021 DOI: 10.1016/j.msec.2020.110709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
The present study presents a green, cost efficient and easy synthesis method of silver nanoparticles (AgNPs) using an aqueous extract of Cornus sanguinea L. fruits (CS). The phytosynthesized silver nanoparticles were characterized using various analytical techniques such as UV-Vis absorption spectroscopy, which confirmed the formation of AgNPs and FTIR spectroscopy, in order to certify the role of the biomolecules present in the fruit extract as reducing and capping agents of the AgNPs. The UV-Vis absorption spectrum showed a broad band at 407 nm characteristic for colloidal silver. Transmission electron microscopy was conducted to investigate the shape and size of the silver nanoparticles, revealing a spherical shape with an average particle size of 18 nm. The antioxidant and anti-inflammatory activities of the fruit extract and green synthesized silver nanoparticles were assessed in vivo on experimental inflammation. The obtained results showed that CS and AgNPs reduced oxidative stress in parallel with increasing of antioxidant defense and diminished the COX-2 expressions. CS extract had a dual effect on NFkB activation depending on the time of testing while AgNPs increased NFkB phosphorylation at 48 h. These results suggested that both AgNPs and CS extract exhibited antioxidant and anti-inflammatory activities but with a different dynamics of action.
Collapse
Affiliation(s)
- Luminita David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, "Babeş-Bolyai" University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Bianca Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, "Babeş-Bolyai" University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania.
| | - Ioana Baldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, Cluj-Napoca 400006, Romania
| | - Diana Olteanu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, Cluj-Napoca 400006, Romania
| | - Pompei Bolfa
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, Cluj-Napoca 400372, Romania; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis
| | - Simona Clichici
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, Cluj-Napoca 400006, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, Cluj-Napoca 400006, Romania.
| |
Collapse
|
15
|
Luzi F, Pannucci E, Santi L, Kenny JM, Torre L, Bernini R, Puglia D. Gallic Acid and Quercetin as Intelligent and Active Ingredients in Poly(vinyl alcohol) Films for Food Packaging. Polymers (Basel) 2019; 11:E1999. [PMID: 31816935 PMCID: PMC6960607 DOI: 10.3390/polym11121999] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023] Open
Abstract
Gallic acid (GA) and quercetin (QC) were used as active ingredients in poly(vinyl alcohol) (PVA) film formulations obtained by solvent casting process. The effect of two different percentages (5 and 10 % wt.) on morphological behavior, thermal stability, optical, mechanical, and release properties of PVA were investigated, while migration with food stimulants and antioxidant properties were tested taking into account the final application as food packaging systems. The results showed how different dispersability in PVA water solutions gave different results in term of deformability (mean value of ε PVA/5GA = 280% and ε PVA/5QC = 255%, with 190% for neat PVA), comparable values for antioxidant activity at the high contents (Radical Scavenging Activity, RSA(%) PVA/10GA = 95 and RSA(%) PVA/10QC = 91) and different coloring attitude of the polymeric films. It was proved that GA, even if it represents the best antioxidant ingredient to be used with PVA and can be easily dispersed in water, it gives more rigid films in comparison to QC, that indeed was more efficient in tuning the deformability of the PVA films, due the presence of sole hydroxyl groups carrying agent. The deviation of the film coloring towards greenish tones for GA films and redness for QC films after 7 and within 21 days in the simulated conditions confirmed the possibility of using easy processable PVA films as active and intelligent films in food packaging.
Collapse
Affiliation(s)
- Francesca Luzi
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Elisa Pannucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - José Maria Kenny
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Luigi Torre
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| |
Collapse
|
16
|
Latos-Brozio M, Masek A. Structure-Activity Relationships Analysis of Monomeric and Polymeric Polyphenols (Quercetin, Rutin and Catechin) Obtained by Various Polymerization Methods. Chem Biodivers 2019; 16:e1900426. [PMID: 31657102 DOI: 10.1002/cbdv.201900426] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023]
Abstract
Plant polyphenols, especially flavonoids, are active and pro-health substances found in fruits and vegetables. Quercetin and its glycoside rutin are representatives of flavonoids, commonly found in plant products. Catechins found in large quantities in tea are also a well-known group of natural polyphenols. These compounds are based on the structure of flavan-3-ol, which is why the number, positions and types of substitutions affect the scavenging of radicals and other properties. Despite some inconsistent evidence, several structure-activity relationships of monomeric flavonoids are well established in vitro. However, the relationships between the activity and other properties of the polymeric forms of flavonoids and their structures are poorly understood so far. The aim of this article is to compare the data on polymerization of quercetin, rutin and catechin, as well as to systematize knowledge about the structure-activity relationship of the polymeric forms of these compounds.
Collapse
Affiliation(s)
- Malgorzata Latos-Brozio
- Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, 90-924, Lodz, Stefanowskiego 12/16, Poland
| | - Anna Masek
- Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, 90-924, Lodz, Stefanowskiego 12/16, Poland
| |
Collapse
|
17
|
Kiratitanavit W, Bruno FF, Kumar J, Nagarajan R. Facile enzymatic preparation of fluorescent conjugated polymers of phenols and their application in sensing. J Appl Polym Sci 2018. [DOI: 10.1002/app.46496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Ferdinando F. Bruno
- US Army Natick Soldier Research Development and Engineering Center, RDECOM; Natick Massachusetts 01760
| | - Jayant Kumar
- Center for Advanced Materials and HEROES Initiative, University of Massachusetts; Lowell Massachusetts 01854
- Department of Physics; University of Massachusetts; Lowell Massachusetts 01854
| | - Ramaswamy Nagarajan
- Department of Plastics Engineering; University of Massachusetts; Lowell Massachusetts 01854
- Center for Advanced Materials and HEROES Initiative, University of Massachusetts; Lowell Massachusetts 01854
| |
Collapse
|
18
|
Hashemi Gahruie H, Niakousari M. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules. Int J Biol Macromol 2017; 104:606-617. [DOI: 10.1016/j.ijbiomac.2017.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/13/2017] [Accepted: 06/05/2017] [Indexed: 01/09/2023]
|
19
|
Oliver S, Hook JM, Boyer C. Versatile oligomers and polymers from flavonoids – a new approach to synthesis. Polym Chem 2017. [DOI: 10.1039/c7py00325k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antioxidant oligomers and polymers have been prepared from two flavonoids, catechin and quercetin, using a new facile technique.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia 2052
| | - James M. Hook
- NMR Facility
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia 2052
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia 2052
| |
Collapse
|
20
|
Dhand C, Harini S, Venkatesh M, Dwivedi N, Ng A, Liu S, Verma NK, Ramakrishna S, Beuerman RW, Loh XJ, Lakshminarayanan R. Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1220-1232. [PMID: 26709441 DOI: 10.1021/acsami.5b09633] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In an era of relentless evolution of antimicrobial resistance, there is an increasing demand for the development of efficient antimicrobial coatings or surfaces for food, biomedical, and industrial applications. This study reports the laccase-catalyzed room-temperature synthesis of mechanically robust, thermally stable, broad spectrum antimicrobial films employing interfacial interactions between poly(vinyl alcohol), PVA, and 14 naturally occurring catecholamines and polyphenols. The oxidative products of catecholamines and polyphenols reinforce the PVA films and also alter their surface and bulk properties. Among the catecholamines-reinforced films, optimum surface and bulk properties can be achieved by the oxidative products of epinephrine. For polyphenols, structure-property correlation reveals an increase in surface roughness and elasticity of PVA films with increasing number of phenolic groups in the precursors. Interestingly, PVA films reinforced with oxidized/polymerized products of pyrogallol (PG) and epinephrine (EP) display potent antimicrobial activity against pathogenic Gram-positive and Gram-negative strains, whereas hydroquinone (HQ)-reinforced PVA films display excellent antimicrobial properties against Gram-positive bacteria only. We further demonstrate that HQ and PG films retain their antimicrobial efficacy after steam sterilization. With an increasing trend of giving value to natural and renewable resources, our results have the potential as durable self-defensive antimicrobial surfaces/films for advanced healthcare and industrial applications.
Collapse
Affiliation(s)
- Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute , Singapore 168751
| | - Sriram Harini
- Anti-Infectives Research Group, Singapore Eye Research Institute , Singapore 168751
| | - Mayandi Venkatesh
- Anti-Infectives Research Group, Singapore Eye Research Institute , Singapore 168751
| | - Neeraj Dwivedi
- Department of Electrical and Computer Engineering, National University of Singapore , Singapore 117576
| | - Alice Ng
- Anti-Infectives Research Group, Singapore Eye Research Institute , Singapore 168751
| | - Shouping Liu
- Anti-Infectives Research Group, Singapore Eye Research Institute , Singapore 168751
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University , Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore , Singapore 117576
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute , Singapore 168751
- SRP in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School , 8 College Road, Singapore 169857
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 3 Research Link, Singapore 117602
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute , Singapore 168751
- SRP in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School , 8 College Road, Singapore 169857
| |
Collapse
|
21
|
|
22
|
Oliver S, Vittorio O, Cirillo G, Boyer C. Enhancing the therapeutic effects of polyphenols with macromolecules. Polym Chem 2016. [DOI: 10.1039/c5py01912e] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of key macromolecular systems employed to stabilise polyphenols, including direct polymerisation of polyphenol monomers and conjugation with macromolecules.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Orazio Vittorio
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science
- University of Calabria Arcavacata di Rende
- Italy
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
23
|
Khlupova ME, Vasil'eva IS, Shumakovich GP, Morozova OV, Chertkov VA, Shestakova AK, Kisin AV, Yaropolov AI. Enzymatic polymerization of dihydroquercetin using bilirubin oxidase. BIOCHEMISTRY (MOSCOW) 2015; 80:233-41. [PMID: 25756538 DOI: 10.1134/s0006297915020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dihydroquercetin (or taxifolin) is one of the most famous flavonoids and is abundant in Siberian larch (Larix sibirica). The oxidative polymerization of dihydroquercetin (DHQ) using bilirubin oxidase as a biocatalyst was investigated and some physicochemical properties of the products were studied. DHQ oligomers (oligoDHQ) with molecular mass of 2800 and polydispersity of 8.6 were obtained by enzymatic reaction under optimal conditions. The oligomers appeared to be soluble in dimethylsulfoxide, dimethylformamide, and methanol. UV-visible spectra of oligoDHQ in dimethylsulfoxide indicated the presence of highly conjugated bonds. The synthesized oligoDHQ was also characterized by FTIR and (1)H and (13)C NMR spectroscopy. Comparison of NMR spectra of oligoDHQ with DHQ monomer and the parent flavonoids revealed irregular structure of a polymer formed via the enzymatic oxidation of DHQ followed by nonselective radical polymerization. As compared with the monomer, oligoDHQ demonstrated higher thermal stability and high antioxidant activity.
Collapse
Affiliation(s)
- M E Khlupova
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jeon JK, Lee J, Imm JY. Effects of laccase-catalyzed rutin polymer fraction on adipogenesis inhibition in 3T3-L1 adipocytes. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
One step poly(quercetin) particle preparation as biocolloid and its characterization. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Cirillo G, Curcio M, Vittorio O, Iemma F, Restuccia D, Spizzirri UG, Puoci F, Picci N. Polyphenol Conjugates and Human Health: A Perspective Review. Crit Rev Food Sci Nutr 2014; 56:326-37. [DOI: 10.1080/10408398.2012.752342] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Lopes GR, Pinto DCGA, Silva AMS. Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Adv 2014. [DOI: 10.1039/c4ra06094f] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The horseradish peroxidase (HRP) potential in organic synthesis.
Collapse
Affiliation(s)
- Guido R. Lopes
- Department of Chemistry & QOPNA
- University of Aveiro
- 3810-193 Aveiro, Portugal
| | | | - Artur M. S. Silva
- Department of Chemistry & QOPNA
- University of Aveiro
- 3810-193 Aveiro, Portugal
| |
Collapse
|
28
|
|