The Influence of Initiator Concentration on Selected Properties of Thermosensitive Poly(Acrylamide-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Microparticles.
Polymers (Basel) 2021;
13:polym13070996. [PMID:
33805049 PMCID:
PMC8036774 DOI:
10.3390/polym13070996]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Thermosensitive polymers PS1-PS5 were synthesized via the surfactant free precipitation polymerization (SFPP) using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA), and potassium persulfate (KPS) at 70 °C in aqueous environment. The effect of KPS concentrations on particle size and lower critical temperature solution (LCST) was examined by dynamic light scattering (DLS). The conductivity in the course of the synthesis and during cooling were investigated. The structural studies were performed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TGA/DTA) and powder X-ray diffraction (PXRD). ATR-FTIR, 1H NMR and PXRD data confirmed the polymeric nature of the material. TGA/DTA curves demonstrated thermal stability up to approx. 160 °C. The effect of temperature on the hydrodynamic diameter (HD) and zeta potential (ZP) were evaluated by dynamic light scattering (DLS) and electrophoretic mobility (EM) in 18-45 °C range. The LCST values were between 30 and 34 °C. HD and polydispersity index (PDI) of aqueous dispersions of the synthesized polymers PS1-PS5 at 18 °C were found to be 226 ± 35 nm (PDI = 0.42 ± 0.04), 299 ± 145 nm (PDI = 0.49 ± 0.29), 389 ± 39 nm (PDI = 0.28 ± 0.07), 584 ± 75 nm (PDI = 0.44 ± 0.06), and 271 ± 50.00 nm (PDI = 0.26 ± 0.14), respectively. At 18 °C the ZPs of synthesized polymers suspensions were -13.14 ± 2.85 mV, -19.52 ± 2.86 mV, -7.73 ± 2.76 mV, -7.99 ± 1.70 mV, and -9.05 ± 2.60 mV for PS1-PS5, respectively. We found that the initiator concentration influences the physicochemical properties of products including the size of polymeric particles and the LCST.
Collapse