Hou Q, Wang X, Ragauskas AJ. Dynamic Self-Assembly of Polyelectrolyte Composite Nanomaterial Film.
Polymers (Basel) 2019;
11:E1258. [PMID:
31366006 PMCID:
PMC6723539 DOI:
10.3390/polym11081258]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of this study is not only to investigate the feasibility of using PAH (polyallylamine hydrochloride) and PSS (poly styrene-4-sulfonic acid sodium salt) to prepare a film via a layer by layer self-assembly process entrained with silver nanoparticles, but also to show that the silver nanoparticles crystalline structure can be defined and deposited on the surface of the substrate in the desired alignment structure and manner, which is of great help to research on the LBL method in the cellulose field. The effect of outermost layer variation, assembly layers, and composition of multilayers on the formation of the LBL structure on a nanofibrillated cellulose (NFC)/polyvinyl alcohol (PVA) substrate was investigated. The deposition of PAH and PSS was monitored by Fourier-transform infrared spectroscopy (FT-IR). The morphology of the LBL film layers was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). Furthermore, thermal degradation properties were investigated by thermogravimetric analysis (TGA), and physical properties of multilayer films were tested by a universal mechanical tester. The results reveal that PAH and PSS can be readily deposited on a NFC/PVA substrate by using LBL methodology to prepare self-assembled polyelectrolyte multilayer films. The surface morphology of the LBL composite changed from negative to positive charged depending on the final LBL treatment. Also, according to SEM and AFM analysis, silver nanoparticles were well dispersed in the (PAH/PSS) film, which significantly improved the thermal stability of the composite films.
Collapse