1
|
Rybak D, Su YC, Li Y, Ding B, Lv X, Li Z, Yeh YC, Nakielski P, Rinoldi C, Pierini F, Dodda JM. Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications. NANOSCALE 2023; 15:8044-8083. [PMID: 37070933 DOI: 10.1039/d3nr00807j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.
Collapse
Affiliation(s)
- Daniel Rybak
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Yu-Chia Su
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yang Li
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Xiaoshuang Lv
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhaoling Li
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Pawel Nakielski
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Chiara Rinoldi
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Filippo Pierini
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| |
Collapse
|
2
|
Khadem E, Kharaziha M, Bakhsheshi-Rad HR, Das O, Berto F. Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers (Basel) 2022; 14:1709. [PMID: 35566878 PMCID: PMC9104595 DOI: 10.3390/polym14091709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Oisik Das
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
3
|
Parhi R, Sahoo SK, Das A. Applications of polysaccharides in topical and transdermal drug delivery: A recent update of literature. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Anik Das
- GITAM Deemed to be University, India
| |
Collapse
|
4
|
Sinelnikov S, Orel L, Kobrina L, Boiko V, Riabov S, Shtompel V, Povnitsa O, Zagorodnya S. Polymer matrices on the basis of polyacrylamide and β‐cyclodextrin‐containing pseudorotaxane for prolonged drug release: Synthesis and properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sergii Sinelnikov
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Luydmila Orel
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Larisa Kobrina
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Valentyna Boiko
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Sergii Riabov
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Volodymir Shtompel
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Olga Povnitsa
- Department of Reproduction of Viruses Zabolotny Institute of Microbiology and Virology the NAS of Ukraine Kyiv Ukraine
| | - Svetlana Zagorodnya
- Department of Reproduction of Viruses Zabolotny Institute of Microbiology and Virology the NAS of Ukraine Kyiv Ukraine
| |
Collapse
|
5
|
Stimuli-responsive natural gums-based drug delivery systems for cancer treatment. Carbohydr Polym 2021; 254:117422. [PMID: 33357903 DOI: 10.1016/j.carbpol.2020.117422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Chemotherapy as the main cancer treatment method has non-specific effects and various side-effects. Accordingly, significant attempts have been conducted to enhance its efficacy through design and development of "smart" drug delivery systems (DDSs). In this context, natural gums, as a nice gift by the nature, can be exploited as stimuli-responsive DDSs for cancer treatment in part due to their renewability, availability, low cost, bioactivity, biocompatibility, low immunogenicity, biodegradability, and acceptable stability in both in vitro and in vivo conditions. However, some shortcomings (e.g., poor mechanical properties and high hydration rate) restrict their biomedical application ranges that can be circumvented through modification process (e.g., grafting of stimuli-responsive polymers or small molecules) to obtain tailored biomaterials. This review article aimed to compile the stimuli-responsive DDSs based on natural gums. In addition, different types of stimuli, the fundamental features of natural gums, as well as their chemical modification approaches are also shortly highlighted.
Collapse
|
6
|
Kang H, Guan L, An K, Tian D. Preparation and physicochemical properties of konjac glucomannan ibuprofen ester as a polysaccharide-drug conjugate. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1821709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Huiting Kang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Lianxiong Guan
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Kai An
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Dating Tian
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi, People’s Republic of China
| |
Collapse
|
7
|
Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Akamanchi KG, Inamadar AC, Das KK, Kulkarni RV. Functionally Tailored Electro-Sensitive Poly(Acrylamide)-g-Pectin Copolymer Hydrogel for Transdermal Drug Delivery Application: Synthesis, Characterization, In-vitro and Ex-vivo Evaluation. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210303110666200206114632] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objectives:
To develop electro-sensitive transdermal drug delivery systems (ETDDS) using
polyacrylamide-grafted-pectin (PAAm-g-PCT) copolymer hydrogel for rivastigmine delivery.
Methods:
Free radical polymerization and alkaline hydrolysis technique was employed to synthesize
PAAm-g-PCT copolymer hydrogel. The PAAm-g-PCT copolymeric hydrogel was used as a reservoir
and cross-linked blend films of PCT and poly(vinyl alcohol) as rate-controlling membranes (RCMs) to
prepare ETDDS.
Results:
The pH of the hydrogel reservoir was found to be in the range of 6.81 to 6.93 and drug content
was 89.05 to 96.29%. The thickness of RCMs was in the range of 51 to 99 μ and RCMs showed permeability
behavior against water vapors. There was a reduction in the water vapor transmission rate as
the glutaraldehyde (GA) concentration was increased. The drug permeation rate from the ETDDS was
enhanced under the influence of electric stimulus against the absence of an electric stimulus. The increase
in flux by 1.5 fold was recorded with applied electric stimulus. The reduction in drug permeability
observed when the concentration of GA was increased. Whereas, the permeability of the drug was
augmented as an electric current was changed from 2 to 8 mA. The pulsatile drug release under “on–
off” cycle of electric stimulus witnessed a faster drug release under ‘on’ condition and it was slow under
‘off’ condition. The alteration in skin composition after electrical stimulation was confirmed
through histopathology studies.
Conclusion:
The PAAm-g-PCT copolymer hydrogel is a useful carrier for transdermal drug delivery
activated by an electric signal to provide on-demand release of rivastigmine.
Collapse
Affiliation(s)
- Sudha B. Patil
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur 586 103, Karnataka, India
| | - Syed Z. Inamdar
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur 586 103, Karnataka, India
| | - Kakarla R. Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anjanapura V. Raghu
- Department of Basic Sciences, School of Engineering & Technology, JAIN (Deemed-to-be University), Bangalore 562112, Karnataka, India
| | - Krishnamachari G. Akamanchi
- Department of Allied Health Sciences, Shri. B.M. Patil Medical College, Hospital & Research Centre, BLDE (Deemed to be University), Vijayapur 586 103, India
| | - Arun C. Inamadar
- Department of Dermatology, Shri. B.M. Patil Medical College, Hospital & Research Centre, BLDE (Deemed to be University), Vijayapur 586 103, India
| | - Kusal K. Das
- Department of Physiology, Shri. B.M. Patil Medical College, Hospital & Research Centre, BLDE (Deemed to be University), Vijayapur 586 103, India
| | - Raghavendra V. Kulkarni
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur 586 103, Karnataka, India
| |
Collapse
|
8
|
Tailor-made electrically-responsive poly(acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: Synthesis, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101525] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Jiang P, Ji H, Li G, Chen S, Lv L. Structure formation in pH-sensitive micro porous membrane from well-defined ethyl cellulose-g-PDEAEMA via non-solvent-induced phase separation process. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1722691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ping Jiang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Hongmin Ji
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Gen Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Shaowei Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Linda Lv
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| |
Collapse
|
10
|
Abstract
Synthetic polymers, biopolymers, and their nanocomposites are being studied, and some of them are already used in different medical areas. Among the synthetic ones that can be mentioned are polyolefins, fluorinated polymers, polyesters, silicones, and others. Biopolymers such as polysaccharides (chitosan, hyaluronic acid, starch, cellulose, alginates) and proteins (silk, fibroin) have also become widely used and investigated for applications in medicine. Besides synthetic polymers and biopolymers, their nanocomposites, which are hybrids formed by a macromolecular matrix and a nanofiller (mineral or organic), have attracted great attention in the last decades in medicine and in other fields due to their outstanding properties. This review covers studies done recently using the polymers, biopolymers, nanocomposites, polymer micelles, nanomicelles, polymer hydrogels, nanogels, polymersomes, and liposomes used in medicine as drugs or drug carriers for cancer therapy and underlines their responses to internal and external stimuli able to make them more active and efficient. They are able to replace conventional cancer drug carriers, with better results.
Collapse
|