1
|
Xue T, Gao L, Dai X, Ma S, Bu Y, Wan Y. Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification. SENSORS (BASEL, SWITZERLAND) 2025; 25:557. [PMID: 39860926 PMCID: PMC11769391 DOI: 10.3390/s25020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor. The sensor is capable of achieving stable and continuous detection of PCN within the range of 5-100 μM across a variety of complex electrolyte environments. The limit of detection (LOD) is as low as 1.67 μM in PBS solution, 2.71 μM in LB broth, and 3.63 μM in artificial saliva. It was demonstrated that the introduction of PTA can complex with PVA through hydrogen bonding to form a stabilized hydrogel architecture, effectively addressing issues related to inadequate film adhesion and unstable sensing characteristics observed with MWCNTs/PVA alone. By adjusting the content of PTA within the hydrogel, an increase followed by a subsequent decrease in sensing current response was observed, elucidating how PTA regulates the active sites and conductive network of MWCNTs on the sensor surface. This study provides a new strategy for constructing stable carbon-based electrochemical sensors and offers feasible assistance towards advancing PCN electrochemical sensors for practical applications.
Collapse
Affiliation(s)
- Ting Xue
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; (T.X.); (S.M.)
| | - Lei Gao
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi’an 710043, China;
| | - Xianying Dai
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; (T.X.); (S.M.)
| | - Shenhui Ma
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; (T.X.); (S.M.)
| | - Yuyu Bu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; (T.X.); (S.M.)
| | - Yi Wan
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi’an 710043, China;
| |
Collapse
|
2
|
Elmaghraby NA, Omer AM, Kenawy ER, Gaber M, El Nemr A. Fabrication of cellulose acetate/cellulose nitrate/carbon black nanofiber composite for oil spill treatment. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:27575-27593. [DOI: 10.1007/s13399-022-03506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 01/12/2025]
Abstract
AbstractThere are global challenges in addressing the oil spill treatment. Nanofiber has become a great potential in the oil spill cleaning process because of the environmental friendliness, high efficiency, low cost, and stability of the obtained nanofiber mats. This study presents a novel composite fabricated from cellulose acetate (CA) and cellulose nitrate (CN) nanofibers with the incorporation of carbon black (CA-CN/CB) for efficient oil removal. This nanofiber composite was fabricated in one-step electrospinning of 10% CA and CN solution with different concentrations of carbon black (CB). The morphology and fiber diameter of the CA-CN/CB nanofiber composite were analyzed using scanning electron microscopy (SEM), and they appeared to be smooth, uniform fibers without beads. The average fiber diameter was in nano-meter size and increased with the increasing CB amount in the composite, ranging from 327 to 755 nm. The FTIR results indicated the presence of CA and CN as characteristic peaks of C = O for CA and O-NO2 for CN. The nanofibers mats of the CA-CN, CA-CN/CB0.7, CA-CN/CB1.5, and CA-CN/CB2.2 composites had Brunauer–Emmett–Teller (BET) surface area of 15.29, 38.40, 4.08, and 6.17 m2 g−1, respectively. Under optimal conditions, CA-CN/CB nanofiber mats absorb more than their weight oil in just 30 min. The adsorption result showed that loading 1.5% of CB to CA-CN mats (CA-CN/CB1.5) was more favorable for oil adsorption. The CA-CN/CB1.5 nanofiber showed its reusability for oil adsorption. The Freundlich isotherm model was the most appropriate model among other isotherm models, including Langmuir and Temkin, with a value of correlation coefficient (R2) equal to or closer to unity, and this result was confirmed by the data obtained from studying different error function models. The adsorption kinetics showed that oil adsorption into CA-CN/CB1.5 nanofiber follows a pseudo-second-order kinetics model with R2 close to unity.
Collapse
|
3
|
Song H, Cheng Z, Qin R, Chen Z, Wang T, Wang Y, Jiang H, Du Y, Wu F. Iron/Molybdenum Sulfide Nanozyme Cocatalytic Fenton Reaction for Photothermal/Chemodynamic Efficient Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14346-14354. [PMID: 38953474 DOI: 10.1021/acs.langmuir.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The issue of bacterial infectious diseases remains a significant concern worldwide, particularly due to the misuse of antibiotics, which has caused the emergence of antibiotic-resistant strains. Fortunately, the rapid development of nanomaterials has propelled significant progress in antimicrobial therapy, offering promising solutions. Among them, the utilization of nanoenzyme-based chemodynamic therapy (CDT) has become a highly hopeful approach to combating bacterial infectious diseases. Nevertheless, the application of CDT appears to be facing certain constraints for its low efficiency in the Fenton reaction at the infected site. In this study, we have successfully synthesized a versatile nanozyme, which was a composite of molybdenum sulfide (MoS2) and iron sulfide (FeS2), through the hydrothermal method. The results showed that iron/molybdenum sulfide nanozymes (Fe/Mo SNZs) with desirable peroxidase (POD) mimic activity can generate cytotoxic reactive oxygen species (ROS) by successfully triggering the Fenton reaction. The presence of MoS2 significantly accelerates the conversion of Fe2+/Fe3+ through a cocatalytic reaction that involves the participation of redox pairs of Mo4+/Mo6+, thereby enhancing the efficiency of CDT. Additionally, based on the excellent photothermal performance of Fe/Mo SNZs, a near-infrared (NIR) laser was used to induce localized temperature elevation for photothermal therapy (PTT) and enhance the POD-like nanoenzymatic activity. Notably, both in vitro and in vivo results demonstrated that Fe/Mo SNZs with good broad-spectrum antibacterial properties can help eradicate Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococcus aureus. The most exciting thing is that the synergistic PTT/CDT exhibited astonishing antibacterial ability and can achieve complete elimination of bacteria, which promoted wound healing after infection. Overall, this study presents a synergistic PTT/CDT strategy to address antibiotic resistance, providing avenues and directions for enhancing the efficacy of wound healing treatments and offering promising prospects for further clinical use in the near future.
Collapse
Affiliation(s)
- Huiping Song
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Ran Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Ziyu Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, Ramadan MS. Utilization of Citrus aurantium peels for sustainable production of high surface area type I microporous nano activated carbons. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:1613-1631. [DOI: 10.1007/s13399-021-01457-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/12/2025]
|
5
|
Sadiq M, Khan MA, Hasan Raza MM, Aalam SM, Zulfequar M, Ali J. Enhancement of Electrochemical Stability Window and Electrical Properties of CNT-Based PVA-PEG Polymer Blend Composites. ACS OMEGA 2022; 7:40116-40131. [PMID: 36385886 PMCID: PMC9648156 DOI: 10.1021/acsomega.2c04933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
New polymer blend composite electrolytes (PBCEs) were prepared by the solution casting technique using poly(vinyl alcohol) (PVA)-polyethylene glycol (PEG), sodium nitrate (NaNO3) as a doping salt and multiwalled carbon nanotubes (MWCNTs) as fillers. The X-ray diffraction pattern confirms the structural properties of the polymer blend composite films. FTIR investigations were carried out to understand the chemical properties and their band assignments. The ionic conductivity of the 10 wt % MWCNTs incorporated PVA-PEG polymer blend was measured as 4.32 × 10-6 S cm-1 at 20 °C and increased to 2.253 × 10-4 S/cm at 100 °C. The dependence of its conductivity on temperature suggests Arrhenius behavior. The equivalent circuit models that represent the R s(Q1(R1(Q2(R2(CR3))))) were used to interpret EIS data. The dielectric behavior of the samples was investigated by utilizing their AC conductance spectra, dielectric permittivity, dielectric constant (εi and εr), electric modulus (Mi and Mr), and loss tangent tan δ. The dielectric permittivity of the samples increases due to electrode polarization effects in low frequency region. The loss tangent's maxima shift with increasing temperature; hence, the peak height rises in the high frequency region. MWCNTs-based polymer blend composite electrolytes show an enhanced electrochemical stability window (4.0 V), better transference number (0.968), and improved ionic conductivity for use in energy storage device applications.
Collapse
Affiliation(s)
- Mohd Sadiq
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
- Department
of Physics, A. R. S. D College, University
of Delhi, New Delhi110021, India
| | - M. Ajmal Khan
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
| | | | - Shah Masheerul Aalam
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
| | - Mohammad Zulfequar
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
| | - Javid Ali
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
| |
Collapse
|
6
|
Elmaghraby NA, Omer AM, Kenawy ER, Gaber M, El Nemr A. Electrospun composites nanofibers from cellulose acetate/carbon black as efficient adsorbents for heavy and light machine oil from aquatic environment. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022; 19:3013-3027. [DOI: 10.1007/s13738-022-02510-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/21/2022] [Indexed: 01/12/2025]
Abstract
AbstractThe feasibility of preparing cellulose acetate/carbon black (CA/CB) composite nanofiber in one step through electrospinning process and investigating its potential oil absorbability and application for machine oil removal from aquatic environment was reported. Different CA/CB composite nanofibers were fabricated by electrospinning of cellulose acetate (CA) solution containing different loads of 0.7, 1.5, and 2.2% CB relative to the weight of CA and labeled as CA/CB0.7, CA/CB1.5, and CA/CB2.2. The scanning electron microscope (SEM) images showed continuous and smooth fiber with submicron diameter ranging from 400–900 nm with good adhering of CB into CA nanofiber. Furthermore, the CA/CB composite nanofibers exhibited high surface area compared with CA nanofiber, which reached 3.057, 2.8718 and 8.244 m2/g for CA/CB0.7, CA/CB1.5 and CA/CB2.2, respectively. Oil adsorption tests were performed with heavy and light machine oils. The CA/CB composite nanofibers showed higher affinity for oil removal from an aqueous solution than pure CA nanofiber. The CA/CB1.5 composite nanofiber has an exceptional performance for the adsorption of both oils, and the maximum oil adsorbed reached 10.6 and 18.3 g/g for light and heavy machine oils, respectively. The kinetic of machine oils adsorption was fitted well by the pseudo-second-order model. Besides, CA/CB composite nanofiber exposed good adsorption properties and respectable reusability after regeneration for four consecutive cycles. The results advocate the excellent potential of as-fabricated CA/CB composite nanofiber as a promising reusable oil adsorbent for oil spill cleanup applications.
Collapse
|
7
|
Facile synthesis of highly flexible sodium ion conducting polyvinyl alcohol (PVA)-polyethylene glycol (PEG) blend incorporating reduced graphene-oxide (rGO) composites for electrochemical devices application. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02892-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Lv X, Tian S, Liu C, Luo LL, Shao ZB, Sun SL. Tough, antibacterial and self-healing ionic liquid/multiwalled carbon nanotube hydrogels as elements to produce flexible strain sensors for monitoring human motion. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Serag E, El-Maghraby A, Hassan N, El Nemr A. CuO@MWCNTs nanocomposite as non-enzyme electrochemical sensor for the detection of Malathion in seawater. DESALINATION AND WATER TREATMENT 2021; 236:240-249. [DOI: 10.5004/dwt.2021.27692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
10
|
Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1842766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahua Dhara (Ganguly)
- Department of Chemistry, Vivekananda Satavarshiki Mahavidyalaya, Jhargram, West Bengal, India
| |
Collapse
|
11
|
Yazdi MK, Vatanpour V, Taghizadeh A, Taghizadeh M, Ganjali MR, Munir MT, Habibzadeh S, Saeb MR, Ghaedi M. Hydrogel membranes: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111023. [PMID: 32994021 DOI: 10.1016/j.msec.2020.111023] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Hydrogel membranes (HMs) are defined and applied as hydrated porous media constructed of hydrophilic polymers for a broad range of applications. Fascinating physiochemical properties, unique porous architecture, water-swollen features, biocompatibility, and special water content dependent transport phenomena in semi-permeable HMs make them appealing constructs for various applications from wastewater treatment to biomedical fields. Water absorption, mechanical properties, and viscoelastic features of three-dimensional (3D) HM networks evoke the extracellular matrix (ECM). On the other hand, the porous structure with controlled/uniform pore-size distribution, permeability/selectivity features, and structural/chemical tunability of HMs recall membrane separation processes such as desalination, wastewater treatment, and gas separation. Furthermore, supreme physiochemical stability and high ion conductivity make them promising to be utilised in the structure of accumulators such as batteries and supercapacitors. In this review, after summarising the general concepts and production processes for HMs, a comprehensive overview of their applications in medicine, environmental engineering, sensing usage, and energy storage/conservation is well-featured. The present review concludes with existing restrictions, possible potentials, and future directions of HMs.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Iran, Tehran.
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Kuwait; Department of Chemical and Materials Engineering, The University of Auckland, New Zealand
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| |
Collapse
|
12
|
Abstract
Synthetic polymers, biopolymers, and their nanocomposites are being studied, and some of them are already used in different medical areas. Among the synthetic ones that can be mentioned are polyolefins, fluorinated polymers, polyesters, silicones, and others. Biopolymers such as polysaccharides (chitosan, hyaluronic acid, starch, cellulose, alginates) and proteins (silk, fibroin) have also become widely used and investigated for applications in medicine. Besides synthetic polymers and biopolymers, their nanocomposites, which are hybrids formed by a macromolecular matrix and a nanofiller (mineral or organic), have attracted great attention in the last decades in medicine and in other fields due to their outstanding properties. This review covers studies done recently using the polymers, biopolymers, nanocomposites, polymer micelles, nanomicelles, polymer hydrogels, nanogels, polymersomes, and liposomes used in medicine as drugs or drug carriers for cancer therapy and underlines their responses to internal and external stimuli able to make them more active and efficient. They are able to replace conventional cancer drug carriers, with better results.
Collapse
|