1
|
Ҫimen D, Bereli N, Günaydın S, Denizli A. Molecular imprinted nanoparticle assisted surface plasmon resonance biosensors for detection of thrombin. Talanta 2022; 246:123484. [DOI: 10.1016/j.talanta.2022.123484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2022]
|
2
|
Adam T, Gopinath SC. Nanosensors: Recent Perspectives on Attainments and Future Promise of Downstream Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Çimen D. Testosterone Imprinted poly(HEMA‐MAA) Nanoparticles Based Surface Plasmon Resonance Sensor for Detection of Testosterone. ChemistrySelect 2022. [DOI: 10.1002/slct.202103949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Duygu Çimen
- Hacettepe University Department of Chemistry Beytepe Ankara Turkey
| |
Collapse
|
4
|
Çimen D, Üzek R, Günaydın S, Denizli A. Real‐Time Detection of Fibrinogen via Imprinted Recognition Sites. ChemistrySelect 2021. [DOI: 10.1002/slct.202101942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Duygu Çimen
- Hacettepe University Department of Chemistry, Beytepe Ankara Turkey
| | - Recep Üzek
- Hacettepe University Department of Chemistry, Beytepe Ankara Turkey
| | - Serdar Günaydın
- Department of Cardiovascular Surgery University of Health Sciences Ankara City Hospital Ankara Turkey
| | - Adil Denizli
- Hacettepe University Department of Chemistry, Beytepe Ankara Turkey
| |
Collapse
|
5
|
Sharma A, Tok AIY, Alagappan P, Liedberg B. Point of care testing of sports biomarkers: Potential applications, recent advances and future outlook. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Choudhury N, De P. Recent progress in pendant rhodamine-based polymeric sensors for the detection of copper, mercury and iron ions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1960172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Neha Choudhury
- Polymer Research Centre & Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre & Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
7
|
Çimen D, Aslıyüce S, Tanalp TD, Denizli A. Molecularly imprinted nanofilms for endotoxin detection using an surface plasmon resonance sensor. Anal Biochem 2021; 632:114221. [PMID: 33961908 DOI: 10.1016/j.ab.2021.114221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/28/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022]
Abstract
In this study, a simple, fast, sensitive and selective surface plasmon resonance (SPR) sensor has been prepared using molecular imprinting method for endotoxin detection. Endotoxin imprinted and non-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) based nanofilms were synthesized on the SPR chip surfaces using ultraviolet polymerization. Endotoxin imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 0.5-100 ng/mL. The limit of detection and quantification were obtained as 0.023 and 0.078 ng/mL, respectively. The response time for the equilibration, adsorption and regeneration was approximately 14 min. The selectivity studies with cholesterol and hemoglobin of endotoxin imprinted SPR sensor were examined. Validation studies were carried out via limulus amebocyte lysate (LAL) in order to demonstrate the applicability of the SPR sensor.
Collapse
Affiliation(s)
- Duygu Çimen
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Sevgi Aslıyüce
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | | | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
8
|
Çimen D, Bereli N, Denizli A. Surface Plasmon Resonance Based on Molecularly Imprinted Polymeric Film for l-Phenylalanine Detection. BIOSENSORS 2021; 11:21. [PMID: 33467753 PMCID: PMC7830203 DOI: 10.3390/bios11010021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 05/05/2023]
Abstract
In this study, we designed a simple, rapid, sensitive and selective surface plasmon resonance (SPR) sensor for detection of L-phenylalaine by utilizing molecular imprinting technology. l-phenylalanine imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacryloyl-l-phenylalanine) polymeric films were synthesized onto SPR chip surfaces using ultraviolet polymerization. l-phenyalanine imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 5.0-400.0 μM. The limit of detection and quantification were obtained as 0.0085 and 0.0285 μM, respectively. The response time for the test including equilibration, adsorption and desorption was approximately 9 min. The selectivity studies of the l-phenylalanine imprinted SPR sensor was performed in the presence of d-phenylalanine and l-tryptophan. Validation studies were carried out via enzyme-linked immunosorbent analysis technique in order to demonstrate the applicability and superiority of the l-phenylalanine imprinted SPR sensor.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (D.Ç.); (N.B.)
| |
Collapse
|
9
|
Çimen D, Bereli N, Kartal F, Denizli A. Molecularly Imprinted Polymer-Based Quartz Crystal Microbalance Sensor for the Clinical Detection of Insulin. Methods Mol Biol 2021; 2359:209-222. [PMID: 34410672 DOI: 10.1007/978-1-0716-1629-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we reported the design of a quartz crystal microbalance (QCM) sensors for selective insulin detection. In the first step, N-methacryloyl-(L) 3-histidine methyl ester (MAH) monomer was formed a complex with insulin. Then, 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate were mixed with MAH:insulin complex. Insulin-imprinted and non-imprinted QCM sensors were synthesized by ultraviolet polymerization for the insulin detection. Insulin-imprinted QCM sensors was characterized by the contact angle measurements, atomic force microscopy and ellipsometry. Limit of detection (LOD) was found as 0.00158 ng/mL for the insulin-imprinted QCM sensors. Selectivity of insulin-imprinted and non-imprinted QCM sensors was carried in the presence of glucagon and aprotinin. Insulin-imprinted QCM sensor for insulin detection was also examined in the artificial plasma.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatma Kartal
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Bakhshpour M, Denizli A. Highly sensitive detection of Cd(II) ions using ion-imprinted surface plasmon resonance sensors. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105572] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Bereli N, Çimen D, Hüseynli S, Denizli A. Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods. J Food Sci 2020; 85:4152-4160. [DOI: 10.1111/1750-3841.15529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Nilay Bereli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Duygu Çimen
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Sabina Hüseynli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Adil Denizli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| |
Collapse
|
12
|
Çimen D, Bereli N, Günaydın S, Denizli A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020; 219:121259. [PMID: 32887150 DOI: 10.1016/j.talanta.2020.121259] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/05/2023]
Abstract
In this study, it is aimed to determine cardiac troponin I by a surface plasmon resonance biosensor immobilized anti-cardiac troponin I monoclonal antibody. The immobilized anti-cardiac troponin I monoclonal antibody surface plasmon resonance biosensors were characterized with ellipsometry, atomic force microscopy and contact angle analysis. After that, surface plasmon resonance biosensor system was completed to biosensor system to investigate kinetic properties for cardiac tropinin I. The sensing ability of surface plasmon resonance biosensor was investigated with 0.001-8.0 ng/mL concentrations of cardiac tropinin I solutions. The limit of detection and limit of quantification were calculated as 0.00012 ng/mL and 0.00041 ng/mL, respectively. To show the selectivity of surface plasmon resonance biosensor competitive adsorption of cardiac tropinin I, myoglobin, immunoglobulin G and prostate specific antigen were investigated. Surface plasmon resonance biosensor was investigated five times with 0.5 ng/mL concentrations of cardiac tropinin I solution to show reuse of the chip. The results showed that surface plasmon resonance biosensor has high selectivity for cardiac tropinin I. The reproducibility of surface plasmon resonance sensors was investigated both on the same day and on different days for five times. To determine the usability, selectivity and validation studies of surface plasmon resonance biosensors were performed by enzyme-linked immunosorbent assay method.
Collapse
Affiliation(s)
- Duygu Çimen
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Nilay Bereli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Serdar Günaydın
- Department of Cardiovascular Surgery, Ankara Numune Education Hospital, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey.
| |
Collapse
|
13
|
Faalnouri S, Çimen D, Bereli N, Denizli A. Surface Plasmon Resonance Nanosensors for Detecting Amoxicillin in Milk Samples with Amoxicillin Imprinted Poly(hydroxyethyl methacrylate‐N‐methacryloyl‐(L)‐ glutamic acid). ChemistrySelect 2020. [DOI: 10.1002/slct.202000621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sona Faalnouri
- Hacettepe UniversityDepartment of Chemistry Beytepe, Ankara Turkey
| | - Duygu Çimen
- Hacettepe UniversityDepartment of Chemistry Beytepe, Ankara Turkey
| | - Nilay Bereli
- Hacettepe UniversityDepartment of Chemistry Beytepe, Ankara Turkey
| | - Adil Denizli
- Hacettepe UniversityDepartment of Chemistry Beytepe, Ankara Turkey
| |
Collapse
|