1
|
Cherednichenko K, Smirnov E, Rubtsova M, Repin D, Semenov A. New Fire-Retardant Open-Cell Composite Polyurethane Foams Based on Triphenyl Phosphate and Natural Nanoscale Additives. Polymers (Basel) 2024; 16:1741. [PMID: 38932089 PMCID: PMC11207528 DOI: 10.3390/polym16121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the mechanical and physical properties of polyurethane foams (PUF), their application is still hindered by high inflammability. The elaboration of effective, low-cost, and environmentally friendly fire retardants remains a pressing issue that must be addressed. This work aims to show the feasibility of the successful application of natural nanomaterials, such as halloysite nanotubes and nanocellulose, as promising additives to the commercial halogen-free, fire-retardant triphenyl phosphate (TPP) to enhance the flame retardance of open-cell polyurethane foams. The nanocomposite foams were synthesized by in situ polymerization. Investigation of the mechanical properties of the nanocomposite PUF revealed that the nanoscale additives led to a notable decrease in the foam's compressibility. The obtained results of the flammability tests clearly indicate that there is a prominent synergetic effect between the fire-retardant and the natural nanoscale additives. The nanocomposite foams containing a mixture of TPP (10 and 20 parts per hundred polyol by weight) and either 10 wt.% of nanocellulose or 20 wt.% of halloysite demonstrated the lowest burning rate without dripping and were rated as HB materials according to UL 94 classification.
Collapse
Affiliation(s)
| | | | | | | | - Anton Semenov
- Department of Physical and Colloid Chemistry, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, Moscow 119991, Russia; (K.C.); (E.S.); (M.R.); (D.R.)
| |
Collapse
|
2
|
Li H, Hou L, Liu Y, Yao Z, Liang L, Tian D, Liu C, Xue J, Zhan L, Liu Y, Zhen Z, Niu K. Balanced Thermal Insulation, Flame-Retardant and Mechanical Properties of PU Foam Constructed via Cost-Effective EG/APP/SA Ternary Synergistic Modification. Polymers (Basel) 2024; 16:330. [PMID: 38337219 DOI: 10.3390/polym16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
To address the challenge of balancing the mechanical, thermal insulation, and flame-retardant properties of building insulation materials, this study presented a facile approach to modify the rigid polyurethane foam composites (RPUFs) via commercial expandable graphite (EG), ammonium polyphosphate (APP), and silica aerogel (SA). The resulting EG/APP/SA/RPUFs exhibited low thermal conductivity close to neat RPUF. However, the compressive strength of the 6EG/2APP/SA/RPUF increased by 49% along with achieving a V-0 flame retardant rating. The residual weight at 700 °C increased from 19.2 wt.% to 30.9 wt.%. Results from cone calorimetry test (CCT) revealed a 9.2% reduction in total heat release (THR) and a 17.5% decrease in total smoke production (TSP). The synergistic flame-retardant mechanism of APP/EG made significant contribution to the excellent flame retardant properties of EG/APP/SA/RPUFs. The addition of SA played a vital role in reducing thermal conductivity and enhancing mechanical performance, effectively compensating for the shortcomings of APP/EG. The cost-effective EG/APP/SA system demonstrates a positive ternary synergistic effect in achieving a balance in RPUFs properties. This study provides a novel strategy aimed at developing affordable building wall insulation material with enhanced safety features.
Collapse
Affiliation(s)
- Hongfu Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hebei Construction Group Corporation Limited, Baoding 071051, China
| | - Longtao Hou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hangzhou Hikvision Digital Technology Co., Ltd., Hangzhou 310052, China
| | - Yunpeng Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hebei Construction Group Corporation Limited, Baoding 071051, China
| | - Zhiyu Yao
- Hebei Construction Group Corporation Limited, Baoding 071051, China
| | - Lixing Liang
- Microelectronics and Information Materials Research Center, Hangzhou Innovation Institute, Beihang University, Hangzhou 310053, China
| | - Dangxin Tian
- Hebei Construction Group Corporation Limited, Baoding 071051, China
- Hebei Province Prefabricated Building Technology Innovation Center, Baoding 071051, China
| | - Chunhui Liu
- Hebei Construction Group Corporation Limited, Baoding 071051, China
- Hebei Province Prefabricated Building Technology Innovation Center, Baoding 071051, China
| | - Junqiang Xue
- Hebei Construction Group Corporation Limited, Baoding 071051, China
- Hebei Province Prefabricated Building Technology Innovation Center, Baoding 071051, China
| | - Linshan Zhan
- Hebei Construction Group Corporation Limited, Baoding 071051, China
- Hebei Province Prefabricated Building Technology Innovation Center, Baoding 071051, China
| | - Yongqi Liu
- Hebei Construction Group Corporation Limited, Baoding 071051, China
- Hebei Province Prefabricated Building Technology Innovation Center, Baoding 071051, China
| | - Zhilu Zhen
- Hebei Construction Group Corporation Limited, Baoding 071051, China
- Hebei Province Prefabricated Building Technology Innovation Center, Baoding 071051, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Cherednichenko K, Kopitsyn D, Smirnov E, Nikolaev N, Fakhrullin R. Fireproof Nanocomposite Polyurethane Foams: A Review. Polymers (Basel) 2023; 15:polym15102314. [PMID: 37242889 DOI: 10.3390/polym15102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
First introduced in 1954, polyurethane foams rapidly became popular because of light weight, high chemical stability, and outstanding sound and thermal insulation properties. Currently, polyurethane foam is widely applied in industrial and household products. Despite tremendous progress in the development of various formulations of versatile foams, their use is hindered due to high flammability. Fire retardant additives can be introduced into polyurethane foams to enhance their fireproof properties. Nanoscale materials employed as fire-retardant components of polyurethane foams have the potential to overcome this problem. Here, we review the recent (last 5 years) progress that has been made in polyurethane foam modification using nanomaterials to enhance its flame retardance. Different groups of nanomaterials and approaches for incorporating them into foam structures are covered. Special attention is given to the synergetic effects of nanomaterials with other flame-retardant additives.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Egor Smirnov
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Nikita Nikolaev
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, Kazan 420008, Russia
| |
Collapse
|
4
|
Liu M, Liu X, Sun P, Tang G, Yang Y, Kan Y, Ye M, Zong Z. Thermoplastic polyurethane composites based on aluminum hypophosphite/modified iron tailings system with outstanding fire performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengru Liu
- School of Civil Engineering and Architecture Anhui University of Technology Ma'anshan China
| | - Xinliang Liu
- School of Civil Engineering and Architecture Anhui University of Technology Ma'anshan China
| | - Po Sun
- Analysis and Testing Central Facility Anhui University of Technology Ma'anshan China
| | - Gang Tang
- School of Civil Engineering and Architecture Anhui University of Technology Ma'anshan China
| | - Yadong Yang
- School of Civil Engineering and Architecture Anhui University of Technology Ma'anshan China
| | - Yongchun Kan
- State Key Laboratory of Fire Science University of Science and Technology of China Hefei China
| | - Mingfu Ye
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei China
| | - Zhifang Zong
- School of Civil Engineering and Architecture Anhui University of Technology Ma'anshan China
| |
Collapse
|
5
|
Abniki M, Shirkavand Hadavand B, Najafi F, Ghasedi I. Synthesis of the effective flame retardant via modification of epoxy resin with phenylboronic acid. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2054349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Milad Abniki
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Iman Ghasedi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
6
|
Characterization and Properties of Water-Blown Rigid Polyurethane Foams Reinforced with Silane-Modified Nanosepiolites Functionalized with Graphite. MATERIALS 2022; 15:ma15010381. [PMID: 35009524 PMCID: PMC8746287 DOI: 10.3390/ma15010381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023]
Abstract
In the present study, a promising flame retardant consisting of 80 wt% silane-modified nanosepiolites functionalized with 20 wt% graphite (SFG) is used to obtain a synergistic effect principally focussed on the thermal stability of water-blown rigid polyurethane (RPU) foams. Density, microcellular structure, thermal stability and thermal conductivity are examined for RPU foams reinforced with different contents of SFG (0, as reference material, 2, 4 and 6 wt%). The sample with 6 wt% SFG presents a slightly thermal stability improvement, although its cellular structure is deteriorated in comparison with the reference material. Furthermore, the influence of SFG particles on chemical reactions during the foaming process is studied by FTIR spectroscopy. The information obtained from the chemical reactions and from isocyanate consumption is used to optimize the formulation of the foam with 6 wt% SFG. Additionally, in order to determine the effects of functionalization on SFG, foams containing only silane-modified nanosepiolites, only graphite, or silane-modified nanosepiolites and graphite added separately are studied here as well. In conclusion, the inclusion of SFG in RPU foams allows the best performance to be achieved.
Collapse
|