1
|
Ferradj S, Yahoum MM, Rebiha M, Nabi I, Toumi S, Lefnaoui S, Hadj-Ziane-Zafour A, Touzout N, Tahraoui H, Mihoub A, Seleiman MF, Ali N, Zhang J, Amrane A. Nanocurcumin-Based Sugar-Free Formulation: Development and Impact on Diabetes and Oxidative Stress Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1105. [PMID: 38998710 PMCID: PMC11243456 DOI: 10.3390/nano14131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The objective of this study is the development of innovative nanocurcumin-based formulations designed for the treatment and prevention of oxidative stress and diabetes. Nanocurcumin was obtained through a micronization process and subsequently encapsulated within biopolymers derived from corn starch and fenugreek mucilage, achieving encapsulation rates of 75% and 85%, respectively. Subsequently, the encapsulated nanocurcumin was utilized in the formulation of sugar-free syrups based on Stevia rebaudiana Bertoni. The stability of the resulting formulations was assessed by monitoring particle size distribution and zeta potential over a 25-day period. Dynamic light scattering (DLS) revealed a particle size of 119.9 nm for the fenugreek mucilage-based syrup (CURF) and 117 nm for the corn starch-based syrup (CURA), with polydispersity indices PDIs of 0.509 and 0.495, respectively. The dissolution rates of the encapsulated nanocurcumin were significantly enhanced, showing a 67% improvement in CURA and a 70% enhancement in CURF compared with crude curcumin (12.82%). Both formulations demonstrated excellent antioxidant activity, as evidenced by polyphenol quantification using the 2.2-diphenyl 1-pycrilhydrazyl (DPPH) assay. In the evaluation of antidiabetic activity conducted on Wistar rats, a substantial reduction in fasting blood sugar levels from 392 to 187 mg/mL was observed. The antioxidant properties of CURF in reducing oxidative stress were clearly demonstrated by a macroscopic observation of the rats' livers, including their color and appearance.
Collapse
Affiliation(s)
- Safa Ferradj
- Laboratory of Chemical Engineering, Chemical Engineering Department, Saad Dahlab University, Blida 09000, Algeria
| | - Madiha Melha Yahoum
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Nouveau Pôle Urbain, Medea University, Medea 26000, Algeria
- LME, Material and Environmental Laboratory, University of Medea, Medea 26001, Algeria
| | - Mounia Rebiha
- Functional Analysis of Chemical Processes Laboratory, Chemical Engineering Department, Saad Dahlab University, Blida 09000, Algeria
| | - Ikram Nabi
- Laboratory of Chemical Engineering, Chemical Engineering Department, Saad Dahlab University, Blida 09000, Algeria
| | - Selma Toumi
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Nouveau Pôle Urbain, Medea University, Medea 26000, Algeria
| | - Sonia Lefnaoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Nouveau Pôle Urbain, Medea University, Medea 26000, Algeria
| | - Amel Hadj-Ziane-Zafour
- Laboratory of Chemical Engineering, Chemical Engineering Department, Saad Dahlab University, Blida 09000, Algeria
| | - Nabil Touzout
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea 26000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Nouveau Pôle Urbain, Medea University, Medea 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria
- National High School of Chemistry of Rennes, Scientific Research National Center (CNRS), ISCR-UMR 6226, Rennes University, F-35000 Rennes, France
| | - Adil Mihoub
- Biophysical Environment Station, Center for Scientific and Technical Research on Arid Regions, Touggourt 30000, Algeria
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nawab Ali
- Department of Biosystems and Agricultural Engineering (BAE), College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- National High School of Chemistry of Rennes, Scientific Research National Center (CNRS), ISCR-UMR 6226, Rennes University, F-35000 Rennes, France
| |
Collapse
|
2
|
Jörgensen AM, Wibel R, Veider F, Hoyer B, Chamieh J, Cottet H, Bernkop-Schnürch A. Self-emulsifying drug delivery systems (SEDDS): How organic solvent release governs the fate of their cargo. Int J Pharm 2023; 647:123534. [PMID: 37863448 DOI: 10.1016/j.ijpharm.2023.123534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Organic solvents are commonly used in self-emulsifying drug delivery systems (SEDDS) to increase payloads of orally administered poorly soluble drugs. Since such solvents are released to a varying extent after emulsification, depending on their hydrophilic nature, they have a substantial impact on the cargo. To investigate this impact in detail, quercetin and curcumin as model drugs were incorporated in SEDDS comprising organic solvents (SEDDS-solvent) of logP < 2 and > 2. SEDDS were characterized regarding size, payload, emulsification time and solvent release. The effect of solvent release on the solubility of these drugs was determined. Preconcentrates of SEDDS-solventlogP < 2 emulsified more rapidly (< 1.5 min) forming smaller droplets than SEDDS-solventlogP > 2. Although, SEDDS-solventlogP < 2 preconcentrates provided higher quercetin solubility than the latter, a more pronounced solvent release caused a more rapid quercetin precipitation after emulsification (1.5 versus 4 h). In contrast, the more lipophilic curcumin was not affected by solvent release at all. Particularly, SEDDS-solventlogP < 2 preconcentrates provided high drug payloads without showing precipitation after emulsification. According to these results, the fate of moderate lipophilic drugs such as quercetin is governed by the release of solvent, whereas more lipophilic drugs such as curcumin remain inside the oily phase of SEDDS even when the solvent is released.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Florina Veider
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Barbara Hoyer
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Joseph Chamieh
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Hanif M, Ameer N, Shehzad MA, Azeem M, Rana HL, Usman M. Improved anti-inflammatory effect of curcumin by designing self-emulsifying drug delivery system. Drug Dev Ind Pharm 2021; 47:1432-1438. [PMID: 34779318 DOI: 10.1080/03639045.2021.2001486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose of present study was to prepare and evaluate self-emulsifying drug delivery system (SEDDS) of curcumin (Cur) to enhance its solubility and percentage release for the evaluation of anti-inflammatory effect. Curcumin loaded SEDDS formulation was prepared, and zones of self-emulsification were recognized by dilution method for the construction of phase diagram. Lauroglycol FCC, Tween 80 (surfactant), and Transcutol HP (co-surfactant) were selected based on their solubility and highest emulsion region in phase diagram. Thermodynamic stability of Cur-SEDDS was calculated through globule size, zeta potential, polydispersity index (PDI), viscosity and pH. Cur-SEDDS were also characterized by encapsulation efficiency (EE %), FT-IR, in vitro release, and in vivo anti-inflammatory effect. Results revealed that droplet size of Cur-SEDDS was 19.77 ± 0.03 nm with their PDI 0.22 ± 0.19, zeta potential -19.33 ± 0.94 and viscosity 25.68 ± 0.86 cp. EE % of Cur-SEDDS was found to be 94.99 ± 0.38%, percentage release 65.83% compared with pure curcumin powder. The designed formulation possesses significant anti-inflammatory activity in paw edema when compared with positive control in carrageenan induced rat paw edema assay. Newly developed Cur-SEDDS with enhanced curcumin solubility, percentage release and better anti-inflammatory action may be an alternative source of oral delivery of curcumin.
Collapse
Affiliation(s)
- Muhammad Hanif
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| | - Nabeela Ameer
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| | | | - Muhammad Azeem
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| | - Hafsa Latif Rana
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| | - Muhammad Usman
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| |
Collapse
|
4
|
Arévalo-Pérez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. J Control Release 2020; 327:703-724. [DOI: 10.1016/j.jconrel.2020.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
|
5
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Kazi M, Shahba AA, Alrashoud S, Alwadei M, Sherif AY, Alanazi FK. Bioactive Self-Nanoemulsifying Drug Delivery Systems (Bio-SNEDDS) for Combined Oral Delivery of Curcumin and Piperine. Molecules 2020; 25:E1703. [PMID: 32276393 PMCID: PMC7181043 DOI: 10.3390/molecules25071703] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/07/2023] Open
Abstract
Background: Bioactive oils of natural origin have gained huge interests from health care professionals and patients. Objective: To design a bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS) comprising curcumin (CUR) and piperine (PP) by incorporating bioactive natural oils in the formulation. Methods: The self-emulsifying properties of apricot, avocado, black seed and Zanthoxylum rhetsa seed oils were screened within various SNEDDS formulations. Each liquid SNEDDS formulation was loaded with both CUR and PP. The optimal liquid SNEDDS were solidified using Aeroperl® and Neusilin® at 1:1 w/w ratio. Liquid and solid SNEDDS were characterized by droplet size analysis, equilibrium solubility, scanning electron microscopy, X-ray powder diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. In-vitro dissolution studies were performed to evaluate the efficiency of CUR and PP release from solid Bio-SNEDDS. Results: The liquid SNEDDS comprised of black seed oil exhibited excellent self-emulsification performance, low droplet size along with transparent appearance. The inclusion of the cosolvent Transcutol P improved the solubilization capacity of both CUR and PP. The liquid SNEDDS were efficiently solidified using the two adsorbents and presented the drugs within amorphous state. In particular, SNEDDS comprised of black seed oil/Imwitor988/Transcutol P/Cremophor RH40 (20/20/10/50) and when solidified with Neusilin showed enhanced CUR and PP release (up to 60% and 77%, respectively). In addition, this formulation efficiently delivers the highly bioactive black seed oil to the patient. Conclusions: The optimized Bio-SNEDDS comprising black seed oil showed outstanding self-emulsification characteristics along with enhanced CUR/PP dissolution upon solidification.
Collapse
Affiliation(s)
- Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia; (S.A.); (M.A.); (A.Y.S.); (F.K.A.)
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmad A. Shahba
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Saad Alrashoud
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia; (S.A.); (M.A.); (A.Y.S.); (F.K.A.)
| | - Majed Alwadei
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia; (S.A.); (M.A.); (A.Y.S.); (F.K.A.)
| | - Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia; (S.A.); (M.A.); (A.Y.S.); (F.K.A.)
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia; (S.A.); (M.A.); (A.Y.S.); (F.K.A.)
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
7
|
Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Fattahian Kalhor N, Saeidifar M, Ramshini H, Saboury AA. Interaction, cytotoxicity and sustained release assessment of a novel anti-tumor agent using bovine serum albumin nanocarrier. J Biomol Struct Dyn 2019; 38:2546-2558. [DOI: 10.1080/07391102.2019.1638303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nassim Fattahian Kalhor
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | | | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Sivasami P, Hemalatha T. Augmentation of therapeutic potential of curcumin using nanotechnology: current perspectives. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1004-1015. [PMID: 29490502 DOI: 10.1080/21691401.2018.1442345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Curcumin, an active principle of Curcuma longa, is extracted from the rhizome. Its therapeutic efficiency has been proved using various in vitro and in vivo models. Inflammatory, neoplastic and preneoplastic diseases are the major targets using curcumin as therapeutic agent. Feasible clinical formulations could not be obtained because of its lack of solubility, stability and higher degradation rate. Recently, many techniques have been evolved to improve the physicochemical properties of pharmacological compounds, thereby increasing their biological activity. Curcumin has been developed using various techniques, particularly micro and nanotechnology to improve its stability and bioavailability. This review focuses on the studies pertaining to the delivery of curcumin in the form of micro and nanosize formulations for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- a Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Thiagarajan Hemalatha
- b Biological Materials Lab , CSIR-Central Leather Research Institute , Chennai , India
| |
Collapse
|
10
|
Nazari-Vanani R, Moezi L, Heli H. In vivo evaluation of a self-nanoemulsifying drug delivery system for curcumin. Biomed Pharmacother 2017; 88:715-720. [DOI: 10.1016/j.biopha.2017.01.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
|
11
|
Singh C, Jodave L, Bhatt TD, Gill MS, Suresh S. Hepatoprotective agent tethered isoniazid for the treatment of drug-induced hepatotoxicity: Synthesis, biochemical and histopathological evaluation. Toxicol Rep 2014; 1:885-893. [PMID: 28962300 PMCID: PMC5598226 DOI: 10.1016/j.toxrep.2014.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022] Open
Abstract
The aim of the study was to investigate the protective effect of isoniazid–curcumin conjugate (INH–CRM) in INH-induced hepatic injury by biochemical analysis and histology examination of liver in Wistar rats. The biochemical analysis included determination of the levels of plasma cholesterol, triglycerides (TG), albumin content, and lipid peroxidation (MDA). INH–CRM administration resulted in a significant decrease in plasma cholesterol, TG, and MDA levels in the liver tissue homogenate with an elevation in albumin level indicating its hepatoprotective activity. Histology of the liver further confirmed the reduction in hepatic injury. The hepatoprotective with INH–CRM can be attributed to the antioxidant activity of curcumin. The conjugate probably stabilizes the curcumin molecule, preventing its presystemic metabolism thereby enhancing its bioavailability and therefore, its hepatoprotective activity. Thus, the novel INH–CRM has the potential to alleviate INH-induced liver toxicity in antitubercular treatment.
Collapse
Affiliation(s)
- Charan Singh
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) Punjab 160062 India
| | - Laxmikant Jodave
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) Punjab 160062 India
| | - Tara Datt Bhatt
- Technology Development Centre, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) Punjab 160062 India
| | - Manjinder Singh Gill
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) Punjab160062 India
| | - Sarasija Suresh
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) Punjab 160062 India
- Corresponding author. Tel.: +0172 2292055; fax: +0172 2214692
| |
Collapse
|
12
|
Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release 2012; 161:235-46. [PMID: 22306429 DOI: 10.1016/j.jconrel.2012.01.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/14/2022]
Abstract
Conventional treatment of inflammatory bowel disease (IBD) is based on the daily administration of high doses of immune-suppressant or anti-inflammatory drugs, often complicated by serious adverse effects. Thus, a carrier system that delivers the drug specifically to the inflamed intestinal regions and shows prolonged drug release would be desirable. The advent of TNF-α antibodies and other biopharmaceuticals as potent and specific immune modulators in recent years has broadened the treatment options in IBD, but further increases the necessity for adequate drug delivery, as integrity and bioactivity of the biological active have to be ensured. Exploiting the pathophysiological idiosyncrasies of IBD such as increased mucus production, changes in the structure of the intestinal epithelium and invasion of activated macrophages, different colloidal drug carrier systems have been designed to passively or actively target the site of inflammation. This review introduces different micro- or nanoparticulate drug delivery systems for oral application in IBD therapy for the delivery of small molecular compounds and next generation therapeutics from the group of biological (i.e. peptide and nucleotide based) drugs.
Collapse
Affiliation(s)
- Eva-Maria Collnot
- Helmholtz-Institute for Pharmaceutical Research Saarland, Dept. of Drug Delivery Saarland University, Campus A 4 1, 66123 Saarbrücken, Germany.
| | | | | |
Collapse
|
13
|
Setthacheewakul S, Mahattanadul S, Phadoongsombut N, Pichayakorn W, Wiwattanapatapee R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm 2010; 76:475-85. [DOI: 10.1016/j.ejpb.2010.07.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
|