Liu JX, Chen K, Redshaw C. Stimuli-responsive mechanically interlocked molecules constructed from cucurbit[
n]uril homologues and derivatives.
Chem Soc Rev 2023;
52:1428-1455. [PMID:
36728265 DOI:
10.1039/d2cs00785a]
[Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cucurbit[n]uril supramolecular chemistry has developed rapidly since 2001 when different cucurbit[n]uril homologues (Q[n]) were successfully separated in pure form. The combination of Q[n] cavity size and various types of external stimuli has given birth to numerous types of Q[n]-based mechanically interlocked molecules (MIMs), including (pseudo)rotaxanes, catenanes, dendrimers and poly(pseudo)rotaxanes. In this review article, the important advances in the field of Q[n]-based MIMs over the past two decades are highlighted. This review also describes examples of heterowheel (pseudo)rotaxanes and poly(pseudo)rotaxanes involving Q[n]s, and reflects on the opportunities and challenges of constructing Q[n]-based stimuli-responsive MIMs.
Collapse