1
|
Kashapov R, Razuvayeva Y, Fedorova E, Zakharova L. The role of macrocycles in supramolecular assembly with polymers. SOFT MATTER 2024; 20:8549-8560. [PMID: 39470183 DOI: 10.1039/d4sm01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, supramolecular self-assembly has attracted the attention of researchers worldwide because it enables the creation of nanostructures with unique properties without additional costs. Spontaneous organization of molecules allows the design and development of new nanostructures that can interact with drugs and living cells and generate a response. Therefore, supramolecular structures have enormous potential and can be in demand in various fields of healthcare and ecology. One of the widely used building blocks of such supramolecular assemblies is polymers. This review examines the joint aggregation behavior of various macrocycles (cyclodextrins, calixarenes, cucurbiturils, porphyrins, and pillararenes) with polymers, the functional properties of these supramolecular systems and their potential applications.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Elena Fedorova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| |
Collapse
|
2
|
Morozova YE, Myaldzina KR, Antipin IS. Structural Rearrangements in Macrocyclic Amphiphile–Poly(acrylic acid) Associates. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22600282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Ziganshina AY, Mansurova EE, Antipin IS. Colloids Based on Calixresorcins for the Adsorption, Conversion, and Delivery of Bioactive Substances. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Morozova JE, Shumatbaeva AM, Antipin IS. Colloidal Solutions of Supramolecular para/meta-Cyclophane–Polyelectrolyte Complexes: Examples, Properties, and Application. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x2270003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Morozova JE, Myaldzina CR, Voloshina AD, Lyubina AP, Amerhanova SK, Syakaev VV, Ziganshina AY, Antipin IS. Сalixresorcine cavitands bearing lipophilic cationic fragments in the construction of mitochondrial-targeting supramolecular nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Nazarova A, Khannanov A, Boldyrev A, Yakimova L, Stoikov I. Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI. Int J Mol Sci 2021; 22:6038. [PMID: 34204914 PMCID: PMC8199762 DOI: 10.3390/ijms22116038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host-guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π-π-stacking, cation-π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.
Collapse
Affiliation(s)
| | | | | | - Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| |
Collapse
|
7
|
Panahi T, Anderson HL, Castro KI, Lamb JD, Harrison RG. Distinguishing amines with an amino acid appended resorcinarene-based cavitand. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1692138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tayyebeh Panahi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Holly L. Anderson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Karla I. Castro
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - John D. Lamb
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Roger G. Harrison
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
8
|
Shalaeva Y, Morozova J, Shumatbaeva A, Nizameev I, Kadirov M, Antipin I. Binding of l-tryptophan and bovine serum albumin by novel gold nanoparticles capped with amphiphilic sulfonatomethylated calixresorcinarenes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules 2019; 9:biom9030090. [PMID: 30841659 PMCID: PMC6468619 DOI: 10.3390/biom9030090] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
The properties and characteristics of calix[n]arenes are described, as well as their capacity to form amphiphilic assemblies by means of the design of synthetic macrocycles with a hydrophilic head and a hydrophobic tail. Their interaction with various substances of interest in pharmacy, engineering, and medicine is also described. In particular, the role of the calix[n]arenes in the detection of dopamine, the design of vesicles and liposomes employed in the manufacture of systems of controlled release drugs used in the treatment of cancer, and their role in improving the solubility of testosterone and anthelmintic drugs and the biocompatibility of biomaterials useful for the manufacture of synthetic organs is emphasized. The versatility of these macrocycles, able to vary in size, shape, functional groups, and hydrophobicity and to recognize various biomolecules and molecules with biological activity without causing cytotoxicity is highlighted.
Collapse
|
10
|
Nakahara Y, Furuno Y, Iwamoto H, Yajima S, Kimura K. A tetraester derivative of fluorescent calix[4]arene bearing a proton-ionizable moiety for highly sensitive extraction-fluorometric determination of sodium ion. Supramol Chem 2018. [DOI: 10.1080/10610278.2018.1447110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yoshio Nakahara
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, Wakayama, Japan
| | - Yuta Furuno
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, Wakayama, Japan
| | - Hitoshi Iwamoto
- Department of Materials Science, National Institute of Technology, Wakayama College, Wakayama, Japan
| | - Setsuko Yajima
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, Wakayama, Japan
| | - Keiichi Kimura
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, Wakayama, Japan
| |
Collapse
|
11
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Kazakova EK, Konovalov AI. The supramolecular polymer complexes with oppositely charged calixresorcinarene: hydrophobic domain formation and synergistic binding modes. SOFT MATTER 2018; 14:1799-1810. [PMID: 29442125 DOI: 10.1039/c8sm00015h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The association of branched polyethyleneimine (PEI) with a series of octacarboxy-calixresorcinarenes bearing different low-rim substituents leads to the formation of nanosized supramolecular complexes. The PEI-macrocycle complexes have fine-tunable sizes regulated by variations in the self-association capacity of the calixresorcinarenes. In the supramolecular complexes, hydrophobic fragments of the polymer and calixresorcinarenes form cooperative hydrophobic domains which provide synergistic enhancement of guest molecule binding. The formation of the supramolecular complexes was investigated by NMR FT-PGSE, NMR 2D NOESY, DLS and TEM methods. In addition, fluorimetry and UV-vis methods were used with the help of optical probes, namely water-soluble Crystal Violet and water-insoluble Orange OT. The investigation demonstrates the first example of the formation of cooperative hydrophobic domains in supramolecular polyelectrolyte-macrocycle complexes which enhance the binding of both water-soluble and water-insoluble organic compounds. The presented supramolecular systems have potential as sensory and drug delivery systems.
Collapse
Affiliation(s)
- Ju E Morozova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|