Bilyk A, Hall AK, Harrowfield JM, Hosseini MW, Skelton BW, White AH. Systematic structural coordination chemistry of p-tert-butyltetrathiacalix[4]arene: 1. Group 1 elements and congeners.
Inorg Chem 2001;
40:672-86. [PMID:
11225110 DOI:
10.1021/ic001008c]
[Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determinations of the crystal structures of complexes of the alkali metal ions with, in the case of Li, the dianion and, in the cases Na-Cs, the monoanion of p-tert-butyltetrathiacalix[4]arene have shown that both the sulfur atoms which form part of the macrocyclic ring, as well as the pendent phenolic/phenoxide oxygen donor atoms, are involved in coordination to these metals. Although the Li and Na complex structures are similar to those of the corresponding complexes of p-tert-butylcalix[4]arene, there is no similarity in the structures of the Cs complexes, with the present structure showing no evidence of polyhapto Cs(+)-pi interactions. Instead, the complex crystallizes as a ligand-bridged (S-, O-donor) aggregate of three Cs ions, solvent molecules, and four calixarenes, somewhat like the Rb complex, though here four Rb ions are present, and higher in aggregation than the K+ complex, where two K+ ions are sandwiched between two calixarene moieties. The triethylammonium complex of the thiacalixarene monoanion, though formally analogous in that it involves a monocation, has a simpler structure than any of the alkali metal derivatives, based formally on proton coordination (H-bonding). However, interestingly, it can be isolated in both solvated (dmf, dmso) and unsolvated forms, as indeed can the "free", p-tert-butyltetrathiacalix[4]arene ligand itself.
Collapse