1
|
Khandelia R, Hodgkinson T, Crean D, Brougham DF, Scholz D, Ibrahim H, Quinn SJ, Rodriguez BJ, Kennedy OD, O’Byrne JM, Brayden DJ. Reproducible Synthesis of Biocompatible Albumin Nanoparticles Designed for Intra-articular Administration of Celecoxib to Treat Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14633-14644. [PMID: 38483312 PMCID: PMC10982941 DOI: 10.1021/acsami.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis, with intra-articular (IA) delivery of therapeutics being the current best option to treat pain and inflammation. However, IA delivery is challenging due to the rapid clearance of therapeutics from the joint and the need for repeated injections. Thus, there is a need for long-acting delivery systems that increase the drug retention time in joints with the capacity to penetrate OA cartilage. As pharmaceutical utility also demands that this is achieved using biocompatible materials that provide colloidal stability, our aim was to develop a nanoparticle (NP) delivery system loaded with the COX-2 inhibitor celecoxib that can meet these criteria. We devised a reproducible and economical method to synthesize the colloidally stable albumin NPs loaded with celecoxib without the use of any of the following conditions: high temperatures at which albumin denaturation occurs, polymer coatings, oils, Class 1/2 solvents, and chemical protein cross-linkers. The spherical NP suspensions were biocompatible, monodisperse with average diameters of 72 nm (ideal for OA cartilage penetration), and they were stable over 6 months at 4 °C. Moreover, the NPs loaded celecoxib at higher levels than those required for the therapeutic response in arthritic joints. For these reasons, they are the first of their kind. Labeled NPs were internalized by primary human articular chondrocytes cultured from the knee joints of OA patients. The NPs reduced the concentration of inflammatory mediator prostaglandin E2 released by the primaries, an indication of retained bioactivity following NP synthesis. Similar results were observed in lipopolysaccharide-stimulated human THP-1 monocytes. The IA administration of these NPs is expected to avoid side-effects associated with oral administration of celecoxib and to maintain a high local concentration in the knee joint over a sustained period. They are now ready for evaluation by IA administration in animal models of OA.
Collapse
Affiliation(s)
- Rumi Khandelia
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Tom Hodgkinson
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - Daniel Crean
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Dermot F. Brougham
- UCD
School of Chemistry, University College
Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Dimitri Scholz
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Hossam Ibrahim
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
School of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Susan J. Quinn
- UCD
School of Chemistry, University College
Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Brian J. Rodriguez
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
School of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Oran D. Kennedy
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - John M. O’Byrne
- National
Orthopaedics Hospital Cappagh, Dublin D11 EV29, Ireland
| | - David J. Brayden
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| |
Collapse
|
2
|
Morici L, Gonzalez-Fernandez P, Jenni S, Porcello A, Allémann E, Jordan O, Rodríguez-Nogales C. Nanocrystal-chitosan particles for intra-articular delivery of disease-modifying osteoarthritis drugs. Int J Pharm 2024; 651:123754. [PMID: 38163526 DOI: 10.1016/j.ijpharm.2023.123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Osteoarthritis is the most common chronic joint disease and a major health care concern due to the lack of efficient treatments. This is mainly related to the local and degenerative nature of this disease. Kartogenin was recently reported as a disease-modifying osteoarthritis drug that promotes cartilage repair, but its therapeutic effect is impeded by its very low solubility. Therefore, we designed a unique nanocrystal-chitosan particle intra-articular delivery system for osteoarthritis treatment that merges the following formulation techniques: nanosize reduction of a drug by wet milling and spray drying. The intermediate formulation (kartogenin nanocrystals) increased the solubility and dissolution rates of kartogenin. The final drug delivery system consisted of an easily resuspendable and ready-to-use microsphere powder for intra-articular injection. Positively charged chitosan microspheres with a median size of approximately 10 µm acted as a mothership drug delivery system for kartogenin nanocrystals in a simulated intra-articular injection. The microspheres showed suitable stability and a controlled release profile in synovial fluid and were nontoxic in human synoviocytes. The cartilage retention skills of the microspheres were also explored ex vivo using cartilage. This drug delivery system shows promise for advancement to preclinical stages in osteoarthritis therapy and scale-up production.
Collapse
Affiliation(s)
- Luca Morici
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Paula Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Sébastien Jenni
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| | - Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
3
|
Wasay SA, Jan SU, Akhtar M, Noreen S, Gul R. Developed meloxicam loaded microparticles for colon targeted delivery: Statistical optimization, physicochemical characterization, and in-vivo toxicity study. PLoS One 2022; 17:e0267306. [PMID: 35468155 PMCID: PMC9037944 DOI: 10.1371/journal.pone.0267306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
The study aimed to fabricate and evaluate Meloxicam (MLX) loaded Hydroxypropyl Methylcellulose (HPMC) microparticles for colon targeting because MLX is a potent analgesic used in the treatment of pain and inflammation associated with colorectal cancer (CRC). Nevertheless, its efficiency is limited by poor solubility and gastrointestinal tracts (GIT) associated side effects. Seventeen formulations of MLX loaded HPMC microparticles were fabricated by the oil-in-oil (O/O)/ emulsion solvent evaporation (ESE) technique. A 3-factor, 3-level Box Behnken (BBD) statistical design was used to estimate the combined effects of the independent variables on the dependent variables (responses), such as the percent yield (R1), the entrapment efficiency (EE) (R2), mean particle size (R3) and in vitro percentage of cumulative drug release (R4). For physicochemical characterization FTIR, XRD, DSC, and SEM analyses were performed. Biocompatibility and non-toxicity were confirmed by in-vivo acute oral toxicity determination. The percentage yield and EE were 65.75-90.71%, and 70.62-88.37%, respectively. However, the mean particle size was 62.89-284.55 μm, and the in vitro cumulative drug release percentage was 74.25-92.64% for 24 hours. FTIR analysis showed that the composition of the particles was completely compatible, while XRD analysis confirmed the crystalline nature of the pure drug and its transition into an amorphous state after formulation. DSC analysis revealed the thermal stability of the formulations. The SEM analysis showed dense spherical particles. The toxicity study in albino rabbits showed no toxicity and was found biocompatible. The histopathological evaluation showed no signs of altered patterns. Results of this study highlighted a standard colonic drug delivery system with the ability to improve patient adherence and reduce GIT drug-associated side effects in CRC treatment.
Collapse
Affiliation(s)
- Syed Abdul Wasay
- Department of Pharmaceutics, Faculty of Pharmacy and Health Sciences, University of Balochistan, Quetta, Pakistan
| | - Syed Umer Jan
- Department of Pharmaceutics, Faculty of Pharmacy and Health Sciences, University of Balochistan, Quetta, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Medical laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rahman Gul
- Department of Pharmaceutics, Faculty of Pharmacy and Health Sciences, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
4
|
Partain BD, Unni M, Rinaldi C, Allen KD. The clearance and biodistribution of magnetic composite nanoparticles in healthy and osteoarthritic rat knees. J Control Release 2020; 321:259-271. [PMID: 32004585 PMCID: PMC7942179 DOI: 10.1016/j.jconrel.2020.01.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Intra-articular injections are the most direct route for administering osteoarthritis (OA) therapies, yet how drug carriers distribute within the joint remains understudied. To this end, we developed a magnetic composite nanoparticle that can be tracked with fluorescence in vivo via an in vivo imaging system (IVIS), and quantified ex vivo via electron paramagnetic resonance (EPR) spectroscopy. Using this particle, the effects of age and OA pathogenesis on particle clearance and distribution were evaluated in the medial meniscus transection model of OA (5-, 10-, and 15-month old male Lewis rats). At 9 weeks after meniscus transection, composite nanoparticles were injected and joint clearance was assessed via IVIS. At 2 weeks after injection, animals were euthanized and particle distribution was quantified ex vivo via EPR spectroscopy. IVIS and EPR spectroscopy data indicate a predominant amount of particles remained in the joint after 14 days. EPR spectroscopy data suggests particles cleared more slowly from OA knees than from the contralateral control, with particles clearing more slowly from 15-month old rats than from 5- and 10-month old rats. This study demonstrates the importance of including both age and OA as factors when evaluating nanoparticles for intra-articular drug delivery.
Collapse
Affiliation(s)
- Brittany D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mythreyi Unni
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, University of Florida, Gainesville, FL, USA.
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Preparation optimization and protective effect on 60Co-γ radiation damage of Pinus koraiensis pinecone polyphenols microspheres. Int J Biol Macromol 2018; 113:583-591. [DOI: 10.1016/j.ijbiomac.2018.02.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/14/2018] [Accepted: 02/20/2018] [Indexed: 11/24/2022]
|
6
|
Intra-articular clearance of labeled dextrans from naive and arthritic rat knee joints. J Control Release 2018; 283:76-83. [PMID: 29842918 DOI: 10.1016/j.jconrel.2018.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Determine the effects of arthritis on the trans-synovial clearance of small and large model compounds following local delivery to the knee joint in a rat model. DESIGN Intra-articular delivery was studied in rat knee joints in an osteoarthritis model of joint instability (medial collateral ligament and meniscus transection model or MMT). Fluorescently-labeled 10 kDa or 500 kDa dextran was injected in the arthritic or unoperated control (naive) joints 3 weeks after surgical destabilization, and the temporal clearance pattern was evaluated via in vivo regional fluorescence imaging, dextran concentrations in plasma and draining lymph nodes, and by quantification of fluorescence in histological synovium sections. Together these data were used to evaluate the effect of osteoarthritis and solute size on the rate of drug clearance from the joint. RESULTS Clearance of 10 kDa dextran from the joint space quantified using in vivo fluorescence imaging of the knee joint region was not significantly different between naive and MMT joints. In contrast, clearance of 500 kDa dextran was significantly reduced for MMT joints when compared to naive joints by fluorescence in vivo imaging. Drug accumulation in lymph nodes and plasma were lower for the 500 kDa dextran as compared to 10 kDa dextran, and lymph node levels were further reduced with the presence of osteoarthritis. Furthermore, synovium was significantly thicker in MMT joints than in naive joints and image analysis of joint tissue sections revealed different trans-synovial distributions of 10 and 500 kDa dextran. CONCLUSION Large macromolecules were retained in the arthritic joint longer than in the healthy joint, while smaller molecules were cleared similarly in healthy and arthritic joints. In vivo fluorescence imaging, plasma and lymph node concentrations, and spatial distributions of drug fluorescence identified differences in higher molecular weight clearance between naive and arthritic disease states. Findings may relate to a thickening of synovium for joints with induced arthritis, and support the concept that intra-articular drug delivery effectiveness may vary with the state of joint pathology.
Collapse
|
7
|
Patel MM. Formulation and development of di-dependent microparticulate system for colon-specific drug delivery. Drug Deliv Transl Res 2017; 7:312-324. [PMID: 28138901 DOI: 10.1007/s13346-017-0358-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally and the second most common cause of cancer-related deaths. Site-specific delivery of drugs leads to an increase in the availability of drugs at the targeted region. The objective of the present investigation was to develop a dually functional microparticulate colon-targeted drug delivery system of meloxicam for potential application in the prophylaxis of colorectal cancer. Chitosan microspheres were prepared by using emulsification-chemical cross-linking technique. Formulation parameters studied include chitosan concentration, drug to polymer ratio, agitation speed, emulsifier concentration, quantity of cross-linking agent and time for cross-linking. In vitro evaluation of microspheres revealed premature release of drug in the upper part of gastrointestinal tract. Since coating of microspheres is difficult to accomplish (with reproducible results), they were compacted to tablets. Enteric coating of tableted microspheres was achieved using Eudragit® S100. In vitro evaluation and SEM studies depict that the microspheres remain intact during compression process. The developed system was further evaluated for in vivo pharmacokinetic and roentgenography studies. In vivo pharmacokinetic evaluation in rabbits reveal that the onset of drug absorption from the coated tableted microspheres (T lag time = 4.67 ± 0.58 h) was significantly delayed compared to uncoated tableted microspheres. In vivo roentgenographic study revealed that the system remained intact, until it reaches to the colonic region (5 h). Thus, from the results of the study, it can be revealed that the developed system could serve as a potential tool for efficient delivery of drug to the colonic region.
Collapse
Affiliation(s)
- Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
8
|
Guo JW, Guan PP, Ding WY, Wang SL, Huang XS, Wang ZY, Wang P. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer's disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 2017; 145:106-127. [PMID: 28865290 DOI: 10.1016/j.biomaterials.2017.07.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is characterized by the loss of neurogenesis and excessive induction of apoptosis. The induction of neurogenesis and inhibition of apoptosis may be a promising therapeutic approach to combating the disease. Celecoxib (CB), a cyclooxygenase-2 specific inhibitor, could offer neuroprotection. Specifically, the CB-encapsulated erythrocyte membranes (CB-RBCMs) sustained the release of CB over a period of 72 h in vitro and exhibited high brain biodistribution efficiency following intranasal administration, which resulted in the clearance of aggregated β-amyloid proteins (Aβ) in neurons. The high accumulation of the CB-RBCMs in neurons resulted in a decrease in the neurotoxicity of CB and an increase in the migratory activity of neurons, and alleviated cognitive decline in APP/PS1 transgenic (Tg) mice. Indeed, COX-2 metabolic products including prostaglandin E2 (PGE2) and PGD2, PGE2 induced neurogenesis by enhancing the expression of SOD2 and 14-3-3ζ, and PGD2 stimulated apoptosis by increasing the expression of BIK and decreasing the expression of ARRB1. To this end, the CB-RBCMs achieved better effects on concurrently increasing neurogenesis and decreasing apoptosis than the phospholipid membrane-encapsulated CB liposomes (CB-PSPD-LPs), which are critical for the development and progression of AD. Therefore, CB-RBCMs provide a rational design to treat AD by promoting the self-repairing capacity of the brain.
Collapse
Affiliation(s)
- Jing-Wen Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wei-Yan Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Si-Ling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
9
|
Sandker MJ, Duque LF, Redout EM, Chan A, Que I, Löwik CWGM, Klijnstra EC, Kops N, Steendam R, van Weeren R, Hennink WE, Weinans H. Degradation, intra-articular retention and biocompatibility of monospheres composed of [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers. Acta Biomater 2017; 48:401-414. [PMID: 27816621 DOI: 10.1016/j.actbio.2016.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/02/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Abstract
In this study, we investigated the use of microspheres with a narrow particle size distribution ('monospheres') composed of biodegradable poly(DL-lactide)-PEG-poly(DL-lactide)-b-poly(L-lactide) multiblock copolymers that are potentially suitable for local sustained drug release in articular joints. Monospheres with sizes of 5, 15 and 30μm and a narrow particle size distribution were prepared by a micro-sieve membrane emulsification process. During in vitro degradation, less crystallinity, higher swelling and accelerated mass loss during was observed with increasing the PEG content of the polymer. The monospheres were tested in both a small (mice/rat) and large animal model (horse). In vivo imaging after injection with fluorescent dye loaded microspheres in mice knees showed that monospheres of all sizes retained within the joint for at least 90days, while the same dose of free dye redistributed to the whole body within the first day after intra-articular injection. Administration of monospheres in equine carpal joints caused a mild transient inflammatory response without any clinical signs and without degradation of the cartilage, as evidenced by the absence of degradation products of sulfated glycosaminoglycans or collagen type 2 in the synovial fluid. The excellent intra-articular biocompatibility was confirmed in rat knees, where μCT-imaging and histology showed neither changes in cartilage quality nor quantity. Given the good intra-articular retention and the excellent biocompatibility, these novel poly(DL-lactide)-PEG-poly(DL-lactide)-b-poly(L-lactide)-based monospheres can be considered a suitable platform for intra-articular drug delivery. STATEMENT OF SIGNIFICANCE This paper demonstrates the great potential in intra-articular drug delivery of monodisperse biodegradable microspheres which were prepared using a new class of biodegradable multi-block copolymers and a unique membrane emulsification process allowing the preparation of microspheres with a narrow particle size distribution (monospheres) leading to multiple advantages like better injectability, enhanced reproducibility and predictability of the in vivo release kinetics. We report not only on the synthesis and preparation, but also in vitro characterization, followed by in vivo testing of intra-articular biocompatibility of the monospheres in both a small and a large animal model. The favourable intra-articular biocompatibility combined with the prolonged intra-articular retention (>90days) makes these monospheres an interesting drug delivery platform. What should also be highlighted is the use of horses; a very accurate translational model for the human situation, making the results not only relevant for equine healthcare, but also for the development of novel human OA therapies.
Collapse
Affiliation(s)
- Maria J Sandker
- Department of Orthopaedics, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Luisa F Duque
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands.
| | - Everaldo M Redout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80163, 3508 TD Utrecht, The Netherlands.
| | - Alan Chan
- Percuros B.V., P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Ivo Que
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Clemens W G M Löwik
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Evelien C Klijnstra
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands.
| | - Nicole Kops
- Department of Orthopaedics, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Rob Steendam
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands.
| | - Rene van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80163, 3508 TD Utrecht, The Netherlands.
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Postbus 80082, 3508 TB Utrecht, The Netherlands.
| | - Harrie Weinans
- Department of Orthopaedics and Department of Rheumatology, UMC Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; Department of Biomechanical Engineering TUDelft, Mekelweg 2, 2628 CD Delft, The Netherlands.
| |
Collapse
|
10
|
Loiola LMD, Cortez Tornello PR, Abraham GA, Felisberti MI. Amphiphilic electrospun scaffolds of PLLA–PEO–PPO block copolymers: preparation, characterization and drug-release behaviour. RSC Adv 2017. [DOI: 10.1039/c6ra25023h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-loaded nanofibrous scaffolds containing hydrophilic or hydrophobic drugs presented encapsulation efficiency, distribution and release dependent on copolymer composition.
Collapse
Affiliation(s)
| | - Pablo R. Cortez Tornello
- Research Institute of Materials Science and Technology
- INTEMA (UNMdP – CONICET)
- Mar del Plata
- Argentina
| | - Gustavo A. Abraham
- Research Institute of Materials Science and Technology
- INTEMA (UNMdP – CONICET)
- Mar del Plata
- Argentina
| | | |
Collapse
|
11
|
Janssen M, Timur UT, Woike N, Welting TJM, Draaisma G, Gijbels M, van Rhijn LW, Mihov G, Thies J, Emans PJ. Celecoxib-loaded PEA microspheres as an auto regulatory drug-delivery system after intra-articular injection. J Control Release 2016; 244:30-40. [PMID: 27836707 DOI: 10.1016/j.jconrel.2016.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
In this study, we investigated the potential of celecoxib-loaded polyester amide (PEA) microspheres as an auto-regulating drug delivery system for the treatment of pain associated with knee osteoarthritis (OA). Celecoxib release from PEA microspheres and inflammation responsive release of a small molecule from PEA was investigated in vitro. Inflammation responsive release of a small molecule from PEA was observed when PEA was exposed to cell lysates obtained from a neutrophil-like Hl-60 cell line. Following a short initial burst release of ~15% of the total drug load in the first days, celecoxib was slowly released throughout a period of >80days. To investigate biocompatibility and degradation behavior in vivo, celecoxib-loaded PEA microspheres were injected in OA-induced (ACLT+pMMx) or contralateral healthy knee joints of male Lewis rats. Bioactivity of celecoxib from loaded PEA microspheres was confirmed by PGE2 measurements in total rat knee homogenates. Intra-articular biocompatibility was demonstrated histologically, where no cartilage damage or synovial thickening and necrosis were observed after intra-articular injections with PEA microspheres. Degradation of PEA microspheres was significantly higher in OA induced knees compared to contralateral healthy knee joints, while loading the PEA microspheres with celecoxib significantly inhibited degradation, indicating a drug delivery system with auto regulatory behavior. In conclusion, this study suggests the potential of celecoxib-loaded PEA microspheres to be used as a safe drug delivery system with auto regulatory behavior for treatment of pain associated with OA of the knee.
Collapse
Affiliation(s)
- Maarten Janssen
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, P. Debyelaan, 25, 6229 HX Maastricht, The Netherlands
| | - Ufuk Tan Timur
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, P. Debyelaan, 25, 6229 HX Maastricht, The Netherlands.
| | - Nina Woike
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, P. Debyelaan, 25, 6229 HX Maastricht, The Netherlands
| | - Guy Draaisma
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Marion Gijbels
- Department of Pathology, Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, The Netherlands; Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, P. Debyelaan, 25, 6229 HX Maastricht, The Netherlands
| | - George Mihov
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Jens Thies
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Pieter J Emans
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, P. Debyelaan, 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
12
|
Abd-Allah H, Kamel AO, Sammour OA. Injectable long acting chitosan/tripolyphosphate microspheres for the intra-articular delivery of lornoxicam: Optimization and in vivo evaluation. Carbohydr Polym 2016; 149:263-73. [DOI: 10.1016/j.carbpol.2016.04.096] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022]
|
13
|
Mwangi TK, Bowles RD, Tainter DM, Bell RD, Kaplan DL, Setton LA. Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. Int J Pharm 2015; 485:7-14. [PMID: 25724134 PMCID: PMC4422162 DOI: 10.1016/j.ijpharm.2015.02.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/31/2015] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To determine the utility of silk fibroin (SF) microparticles as sustained release vehicles for intra-articular delivery. DESIGN SF formulations were varied to generate microparticle drug carriers that were characterized in vitro for their physical properties, release kinetics for a conjugated fluorophore (Cy7), and in vivo for intra-articular retention time using live-animal, fluorescence in vivo imaging. RESULTS SF microparticle carriers were spherical in shape and ranged from 598 nm to 21.5 μm in diameter. SF microparticles provided for sustained release of Cy7 in vitro, with only 10% of the initial load released over 7 days. Upon intra-articular injection in rat knee joints, the SF microparticles were associated with an intra-articular fluorescence decay half-life of 43.3h, greatly increasing the joint residence over that for an equivalent concentration of SF-Cy7 in solution form. The SF microparticles also increase the localization of dye within the joint cavity as determined by image analysis of fluorescent gradients, significantly reducing distribution of the Cy7 to neighboring tissue as compared to SF-Cy7 in free solution. CONCLUSION Silk microparticles act to provide for localized and sustained delivery of loaded small molecules following intra-articular injection, and may be an attractive strategy for delivering small molecule drugs for the treatment of arthritis.
Collapse
Affiliation(s)
| | | | - David M. Tainter
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham,
NC
| | - Richard D. Bell
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham,
NC
| | - David L. Kaplan
- Dept of Biomedical Engineering, Tufts University, Medford, MA
| | - Lori A. Setton
- Dept of Biomedical Engineering, Duke University, Durham, NC
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham,
NC
| |
Collapse
|
14
|
Yang HY, van Dijk M, Licht R, Beekhuizen M, van Rijen M, Janstål MK, Öner FC, Dhert WJA, Schumann D, Creemers LB. Applicability of a Newly Developed Bioassay for Determining Bioactivity of Anti-Inflammatory Compounds in Release Studies − Celecoxib and Triamcinolone Acetonide Released from Novel PLGA-Based Microspheres. Pharm Res 2014; 32:680-90. [DOI: 10.1007/s11095-014-1495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 08/15/2014] [Indexed: 11/30/2022]
|
15
|
Drugs and Polymers for Delivery Systems in OA Joints: Clinical Needs and Opportunities. Polymers (Basel) 2014. [DOI: 10.3390/polym6030799] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
16
|
Bédouet L, Moine L, Pascale F, Nguyen VN, Labarre D, Laurent A. Synthesis of hydrophilic intra-articular microspheres conjugated to ibuprofen and evaluation of anti-inflammatory activity on articular explants. Int J Pharm 2014; 459:51-61. [DOI: 10.1016/j.ijpharm.2013.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/01/2013] [Indexed: 01/04/2023]
|
17
|
Abstract
Diarthrodial joints are well suited to intra-articular injection, and the local delivery of therapeutics in this fashion brings several potential advantages to the treatment of a wide range of arthropathies. Possible benefits over systemic delivery include increased bioavailability, reduced systemic exposure, fewer adverse events, and lower total drug costs. Nevertheless, intra-articular therapy is challenging because of the rapid egress of injected materials from the joint space; this elimination is true of both small molecules, which exit via synovial capillaries, and of macromolecules, which are cleared by the lymphatic system. In general, soluble materials have an intra-articular dwell time measured only in hours. Corticosteroids and hyaluronate preparations constitute the mainstay of FDA-approved intra-articular therapeutics. Recombinant proteins, autologous blood products and analgesics have also found clinical use via intra-articular delivery. Several alternative approaches, such as local delivery of cell and gene therapy, as well as the use of microparticles, liposomes, and modified drugs, are in various stages of preclinical development.
Collapse
Affiliation(s)
- Christopher H Evans
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN-115, Boston, MA 02215, USA
| | - Virginia B Kraus
- Duke University Medical Center, Department of Medicine, Box 3416, Durham, NC 27710, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| |
Collapse
|
18
|
Intra-articular fate of degradable poly(ethyleneglycol)-hydrogel microspheres as carriers for sustained drug delivery. Int J Pharm 2013; 456:536-44. [DOI: 10.1016/j.ijpharm.2013.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/22/2022]
|
19
|
Sandker MJ, Petit A, Redout EM, Siebelt M, Müller B, Bruin P, Meyboom R, Vermonden T, Hennink WE, Weinans H. In situ forming acyl-capped PCLA–PEG–PCLA triblock copolymer based hydrogels. Biomaterials 2013; 34:8002-11. [DOI: 10.1016/j.biomaterials.2013.07.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/12/2013] [Indexed: 11/25/2022]
|
20
|
Cannavà C, Tommasini S, Stancanelli R, Cardile V, Cilurzo F, Giannone I, Puglisi G, Ventura CA. Celecoxib-loaded PLGA/cyclodextrin microspheres: characterization and evaluation of anti-inflammatory activity on human chondrocyte cultures. Colloids Surf B Biointerfaces 2013; 111:289-96. [PMID: 23838195 DOI: 10.1016/j.colsurfb.2013.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/01/2022]
Abstract
PLGA microspheres were prepared as a sustained release system for the intra-articular administration of celecoxib (CCB). The microspheres were prepared in the presence of different concentrations of dimethyl-β-cyclodextrin (DM-β-Cyd), by the simple oil-in-water emulsion/evaporation solvent method. The microspheres were evaluated as to surface morphology, size and technological properties (such as encapsulation efficiency, drug loading capacity and drug release). Ex vivo studies on cultures of human chondrocytes were performed in order to evaluate the influence of the polymeric carriers on the pharmacological activity of CCB. All systems ranged from about 1 to 5 μm in size and had a high encapsulation efficiency percentage ranging from about 80% to 90% (w/w), except for CCB-loaded-PLGA microspheres containing the highest amount of DM-β-Cyd, in which a dramatic drop in the encapsulation efficiency was observed (about 54%, w/w). FIB images evidenced the fact that the microspheres had a porous structure in the presence of the highest amount of DM-β-Cyd. The macrocycle modulated the release profiles of CCB from the microspheres, producing in some cases a zero-order kinetic release. Ex vivo biological studies demonstrated that DM-β-Cyd improved the drug's anti-inflammatory activity. Thus, CCB-loaded PLGA/cyclodextrin microspheres may have a potential therapeutic application in the treatment of osteo- and rheumatoid arthritis.
Collapse
Affiliation(s)
- Carmela Cannavà
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università degli Studi di Messina, V. le Annunziata, I-98168 Messina, Italy
| | - Silvana Tommasini
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università degli Studi di Messina, V. le Annunziata, I-98168 Messina, Italy
| | - Rosanna Stancanelli
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università degli Studi di Messina, V. le Annunziata, I-98168 Messina, Italy
| | - Venera Cardile
- Dipartimento di Scienze Biomediche (Sezione di Fisiologia), Università degli Studi di Catania, Città Universitaria, V. le A. Doria, 6 - I-95125 Catania, Italy
| | - Felisa Cilurzo
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Viale Europa 88100, Loc. Germaneto Catanzaro, Italy
| | - Ignazio Giannone
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Città Universitaria, V. le A. Doria, 6 - I-95125 Catania, Italy
| | - Giovanni Puglisi
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Città Universitaria, V. le A. Doria, 6 - I-95125 Catania, Italy
| | - Cinzia Anna Ventura
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università degli Studi di Messina, V. le Annunziata, I-98168 Messina, Italy.
| |
Collapse
|
21
|
Chitosan-hyaluronate hybrid gel intraarticular injection delays osteoarthritis progression and reduces pain in a rat meniscectomy model as compared to saline and hyaluronate treatment. Adv Orthop 2012; 2012:979152. [PMID: 22611500 PMCID: PMC3352251 DOI: 10.1155/2012/979152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/17/2012] [Indexed: 12/16/2022] Open
Abstract
Chitosan-Hyaluronate hybrid gel (CHHG) is a self-forming thermo-responsive hydrogel. The current study was undertaken in order to assess the effect of CHHG on rat's surgically induced osteoarthritis. Methods. Thirteen rats were included in the study. In all rats weight-bearing was assessed using a Linton Incapacitance tester. All rats underwent bilateral medial partial meniscectomy. Four rats received a saline injection in the control knee and a 200-microliter injection of CHHG in the experimental knee. Five rats received a high-molecular weight hyaluronate injection to the control knee and a 200-microliter injection of CHHG in the experimental knee. Four rats underwent the same surgical procedure, allowed to recuperate for seven days and then CHHG and hyaluronate were injected. The animals were followed for 6 weeks. Two weeks after injection of a therapeutic substance the amount of weight-bearing on each knee was evaluated using a Linton Incapacitance meter. Results. Two weeks after induction of osteoarthritis there is less pain in the CHHG-treated knee than in the control-treated knee, as determined using a Lintron Incapacitance meter. After six-weeks the histological appearance of the CHHG-treated knee was superior to that of the controls. This is indicated by thicker cartilage remaining on the medial femoral condyle as well as less cyst formation in the CHHG-treated knee. Discussion. CHHG appears to delay progression of osteoarthritis and lessen pain in a rat surgically-induced knee osteoarthritis model. These results support other published results, indicating that there is an ameliorative effect of chitosan on human and rabbit osteoarthritis.
Collapse
|
22
|
Intra-articular drug delivery for arthritis diseases: the value of extended release and targeting strategies. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Mennini N, Furlanetto S, Cirri M, Mura P. Quality by design approach for developing chitosan-Ca-alginate microspheres for colon delivery of celecoxib-hydroxypropyl-β-cyclodextrin-PVP complex. Eur J Pharm Biopharm 2012; 80:67-75. [DOI: 10.1016/j.ejpb.2011.08.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
|
24
|
Patil SB, Kaul A, Babbar A, Mathur R, Mishra A, Sawant KK. In vivo evaluation of alginate microspheres of carvedilol for nasal delivery. J Biomed Mater Res B Appl Biomater 2011; 100:249-55. [PMID: 22113887 DOI: 10.1002/jbm.b.31947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/21/2011] [Accepted: 07/20/2011] [Indexed: 11/11/2022]
Abstract
Mucoadhesive alginate microspheres of carvedilol (CRV) for nasal administration intended to avoid first pass metabolism and to improve bioavailability were prepared and evaluated. The microspheres were prepared by emulsification cross-linking method. Radiolabeling of CRV and its microspheres was performed by direct labeling with reduced technetium-99m ((99m) Tc). In vivo studies were performed on New Zealand white rabbits by administering the microspheres intranasally using monodose nasal insufflator. The radioactivity was measured in a well-type gamma scintillation counter. The noncompartmental pharmacokinetic analysis was performed. The pattern of deposition and clearance of the microspheres were evaluated using a radioactive tracer and the noninvasive technique of gamma scintigraphy. The clearance of alginate microsphere was compared with that of control lactose. The microspheres were nonaggregated, free flowing powders with spherical shape, and smooth surface. Pharmacokinetics study displayed an increase in area under the curve and hence in relative bioavailability when compared with intravenous administration of drug. The nasal bioavailability was 67.87% which indicates that nasal administration results in improved absorption of CRV. The results of gamma scintigraphy showed that the alginate microspheres had significantly reduced rates of clearance from the rabbit nasal cavity when compared with the control lactose.
Collapse
Affiliation(s)
- Sanjay B Patil
- Shri Neminath Jain Brahmacharyashram's Shriman Sureshdada Jain College of Pharmacy, Nashik, Maharashtra, India.
| | | | | | | | | | | |
Collapse
|
25
|
Ghorab DM, Amin MM, Khowessah OM, Tadros MI. Colon-targeted celecoxib-loaded Eudragit®S100-coated poly-ϵ-caprolactone microparticles: Preparation, characterization andin vivoevaluation in rats. Drug Deliv 2011; 18:523-35. [DOI: 10.3109/10717544.2011.595841] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
26
|
Bohr A, Kristensen J, Stride E, Dyas M, Edirisinghe M. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. Int J Pharm 2011; 412:59-67. [DOI: 10.1016/j.ijpharm.2011.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 11/30/2022]
|
27
|
Jose S, Prema MT, Chacko AJ, Thomas AC, Souto EB. Colon specific chitosan microspheres for chronotherapy of chronic stable angina. Colloids Surf B Biointerfaces 2010; 83:277-83. [PMID: 21194900 DOI: 10.1016/j.colsurfb.2010.11.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
In the present work, chitosan microspheres with a mean diameter between 6.32 μm and 9.44 μm, were produced by emulsion cross-linking of chitosan, and tested for chronotherapy of chronic stable angina. Aiming at developing a suitable colon specific strategy, diltiazem hydrochloride (DTZ) was encapsulated in the microspheres, following Eudragit S-100 coating by solvent evaporation technique, exploiting the advantages of microbiological properties of chitosan and pH dependent solubility of Eudragit S-100. Different microsphere formulations were prepared varying the ratio DTZ:chitosan (1:2 to 1:10), stirring speed (1000-2000 rpm), and the concentration of emulsifier Span 80 (0.5-1.5% (w/v)). The effect of these variables on the particle size and encapsulation parameters (production yield (PY), loading capacity (LC), encapsulation efficiency (EE)) was evaluated to develop an optimized formulation. In vitro release study of non-coated chitosan microspheres in simulated gastrointestinal (GI) fluid exhibited a burst release pattern in the first hour, whereas Eudragit S-100 coating allowed producing systems of controlled release diffusion fitting to the Higuchi model, and thus suitable for colon-specific drug delivery. DSC analysis indicated that DTZ was dispersed within the microspheres matrix. Scanning electron microscopy revealed that the microspheres were spherical and had a smooth surface. Chitosan biodegradability was proven by the enhanced release rate of DTZ in presence of rat caecal contents.
Collapse
Affiliation(s)
- S Jose
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor-686 631, Kerala, India
| | | | | | | | | |
Collapse
|
28
|
Mansour HM, Sohn M, Al-Ghananeem A, Deluca PP. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci 2010; 11:3298-322. [PMID: 20957095 PMCID: PMC2956096 DOI: 10.3390/ijms11093298] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 12/16/2022] Open
Abstract
Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.
Collapse
Affiliation(s)
- Heidi M Mansour
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; E-Mails: (M.S.); (A.A.-G.); (P.P.D)
| | | | | | | |
Collapse
|
29
|
Natarajan V, Krithica N, Madhan B, Sehgal PK. Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. J Pharm Sci 2010; 100:195-205. [PMID: 20607810 DOI: 10.1002/jps.22266] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/19/2010] [Accepted: 05/12/2010] [Indexed: 11/06/2022]
Abstract
Quercetin had been shown to be effective in the management of arthritis. However, bioavailability of quercetin is a concern for such treatment. This work aims at the development of intra-articular drug delivery system by controlled release of quercetin (loaded in microspheres) for the management of rheumatoid arthritis. Polycaprolactone has been used for the preparation of microspheres (with quercetin) using the solvent evaporation method. The physio-chemical characterisation of polycaprolactone-loaded quercetin microspheres was carried out to obtain information about particle size distribution, drug loading efficiency, morphology, thermal properties, polymorphism and release trends in phosphate-buffered saline at pH 7.4 and 37°C. Quercetin-loaded polycaprolactone microspheres were found to be biocompatible as evidenced from in vitro and in vivo studies using a rabbit synovial cells and Wistar rats, respectively. Quercetin release from microspheres of selected formulations showed biphasic nature due to initial burst effect followed by a controlled release. These results suggest that optimised quercetin-loaded polycaprolactone microspheres may be the viable strategy for controlled release of quercetin in the joint cavity for more than 30 days by intra-articular injection to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Venkatachalam Natarajan
- Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 20, India
| | | | | | | |
Collapse
|
30
|
Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep 2010; 30:365-73. [DOI: 10.1042/bsr20090104] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CLX (celecoxib) is a highly hydrophobic non-steroidal anti-inflammatory drug with high plasma protein binding. We describe here the encapsulation of CLX in MLVs (multilamellar vesicles) composed of DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and variable amounts of cholesterol. The effects of cholesterol content on liposome size, percentage drug loading and in vitro drug release profiles were investigated. Differential scanning calorimetry and FTIR (Fourier-transform infrared) spectroscopy were used to determine molecular interactions between CLX, cholesterol and DSPC. The phase transition temperature (Tm) of vesicles was reduced in a synergistic manner in the presence of both CLX and cholesterol. Encapsulation efficiency, loading and release of CLX decreased with increasing cholesterol content. FTIR results indicated that this decrease was due to a competition between CLX and cholesterol for the co-operativity region of the phospholipids. In the presence of cholesterol, CLX was pushed further into the hydrophobic core of the bilayer. However, MLVs prepared with DSPC only (without cholesterol) exhibited the lowest ability for drug retention after 72 h. Our results indicated that CLX, without the requirement of modifications to enhance solubilization, can be encapsulated and released from liposomal formulations. This method of drug delivery may be used to circumvent the low bioavailability and systemic side effects of oral CLX formulations.
Collapse
|
31
|
Larsen C, Ostergaard J, Larsen SW, Jensen H, Jacobsen S, Lindegaard C, Andersen PH. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci 2009; 97:4622-54. [PMID: 18306275 DOI: 10.1002/jps.21346] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The joint cavity constitutes a discrete anatomical compartment that allows for local drug action after intra-articular injection. Drug delivery systems providing local prolonged drug action are warranted in the management of postoperative pain and not least arthritic disorders such as osteoarthritis. The present review surveys various themes related to the accomplishment of the correct timing of the events leading to optimal drug action in the joint space over a desired time period. This includes a brief account on (patho)physiological conditions and novel potential drug targets (and their location within the synovial space). Particular emphasis is paid to (i) the potential feasibility of various depot formulation principles for the intra-articular route of administration including their manufacture, drug release characteristics and in vivo fate, and (ii) how release, mass transfer and equilibrium processes may affect the intra-articular residence time and concentration of the active species at the ultimate receptor site.
Collapse
Affiliation(s)
- Claus Larsen
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
32
|
Lu Y, Zhang G, Sun D, Zhong Y. Preparation and evaluation of biodegradable flubiprofen gelatin micro-spheres for intra-articular administration. J Microencapsul 2008; 24:515-24. [PMID: 17654172 DOI: 10.1080/02652040701433479] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE A controlled release delivery system that localizes flurbiprofen (FP) in synovial joint is prefered to treat inflammation in rheumatoid arthritis (RA). The purpose of this study is to develop and characterize FP-loaded gelatin microspheres and evaluate FP plasma concentrations following intra-articular injection into healthy rabbits. METHODS Flurbiprofen gelatin microspheres (FP-GMS) were prepared by a emulsion-congealing method. The RP-HPLC method was established to determine the FP concentraion in plasma. The particle size of FP-GMS with optimized formulation was 2.5 approximately 12.3 microm with a mean size of gelatin microspheres of 7.53 microm. The drug loading efficiency was 5.02% (w/w). The dissolution profile of the FP-GMS was depicted by Higuchi kinetics. RESULTS The half time for 50% release of FP from FP-GMS (t(50)) was 5.58 h. A total of 96% original FP was remained in the microspheres after being stored under 75% humidity and 37 degrees C for 3 months. The pharmacokinetics study demonstrated that the mean resident time (MRT) of FP in the FP-GMS group was prolonged vs. the injection group significantly (p < 0.01) after intra-articular administration into healthy rabbit hind joints. The T(p) of FP-GMS group was prolonged by 2.03-times and the C(max) was decreased by 5.57-times vs. that of the injection group, respectively. The FP plasma concentration in FP-GMS was 8-fold higher than that of the FP injection group at 8 h. In addition, FP was rapidly cleared from blood circulation within 8 h with the injection group while FP was retained for more than 24 h with the FP-GMS group. CONCLUSIONS These data indicate that the simple emulsion-congealing method can be used to encapsulate water soluble drugs such as FP for the treatment of inflammatory disease within the joint cavity.
Collapse
Affiliation(s)
- Ying Lu
- School of Pharmacy, East Hospital of Hepatobiliary Surgery Second Military Medical University, 325 Guohe Road Shanghai, 200433 China
| | | | | | | |
Collapse
|
33
|
Homar M, Ubrich N, El Ghazouani F, Kristl J, Kerc J, Maincent P. Influence of polymers on the bioavailability of microencapsulated celecoxib. J Microencapsul 2008; 24:621-33. [PMID: 17763056 DOI: 10.1080/09637480701497360] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Celecoxib, a selective COX-2 inhibitor, primarily used in treatment of osteoarthritis, rheumatoid arthritis and acute pain was encapsulated in microparticles composed of various polyesters, polymethacrylates or cellulose derivatives used alone or blended. The influence of polymers on microparticle mean diameter, encapsulation efficiency and in vitro and in vivo celecoxib release was investigated. Microparticles were in the size range 11-37 microm. Encapsulation efficiency was optimal due to poor aqueous solubility of celecoxib. Considering in vitro release, microparticles could be divided into drug delivery systems with fast and slow release profiles. Microparticles prepared with poly-epsilon-caprolactone, Eudragit RS and low viscosity ethylcellulose, together with physical mixture of celecoxib with lactose and Celebrex, were tested in vivo. Relative bioavailability of celecoxib was below 20% in all cases and was probably the consequence of a slow in vivo release of celecoxib from microparticles or low wettability in the case of Celebrex and physical mixture.
Collapse
Affiliation(s)
- Miha Homar
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
34
|
Foda NH, El-laithy HM, Tadros MI. Implantable biodegradable sponges: effect of interpolymer complex formation of chitosan with gelatin on the release behavior of tramadol hydrochloride. Drug Dev Ind Pharm 2007; 33:7-17. [PMID: 17192246 DOI: 10.1080/03639040600975188] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effect of interpolymer complex formation between positively charged chitosan and negatively charged gelatin (Type B) on the release behavior of tramadol hydrochloride from biodegradable chitosan-gelatin sponges was studied. Mixed sponges were prepared by freeze-drying the cross-linked homogenous stable foams produced from chitosan and gelatin solutions where gelatin acts as a foam builder. Generation of stable foams was optimized where concentration, pH of gelatin solution, temperature, speed and duration of whipping process, and, chitosan-gelatin ratio drastically affect the properties and the stability of the produced foams. The prepared sponges were evaluated for their morphology, drug content, and microstructure using scanning electron microscopy, mechanical properties, uptake capacity, drug release profile, and their pharmacodynamic activity in terms of the analgesic effect after implantation in Wistar rats. It was revealed that whipping 7% (w/w) gelatin solution, of pH 5.5, for 15 min at 25 degrees C with a stirring speed of 1000 rpm was the optimum conditions for stable gelatin foam generation. Moreover, homogenous, uniform chitosan-gelatin foam with small air bubbles were produced by mixing 2.5% w/w chitosan solution with 7% w/w gelatin solution in 1:5 ratio. Indeed, polyionic complexation between chitosan and gelatin overcame the drawbacks of chitosan sponge mechanical properties where, pliable, soft, and compressible sponge with high fluid uptake capacity was produced at 25 degrees C and 65% relative humidity without any added plasticizer. Drug release studies showed a successful retardation of the incorporated drug where the t50% values of the dissolution profiles were 0.55, 3.03, and 4.73 hr for cross-linked gelatin, un-cross-linked chitosan-gelatin, and cross-linked chitosan-gelatin sponges, respectively. All the release experiments followed Higuchi's diffusion mechanism over 12 hr. The achieved drug prolongation was a result of a combined effect of both cross-linking and polyelectrolyte complexation between chitosan and gelatin. The analgesic activity of the implanted tramadol hydrochloride mixed chitosan-gelatin sponge showed reasonable analgesic effect that was maintained for more than 8 hr. Therefore, the use of chitosan and gelatin together appears to allow the formulator to manipulate both the drug release profiles and the mechanical properties of the sponge that could be effectively implanted.
Collapse
Affiliation(s)
- Nagwa H Foda
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
35
|
Betre H, Liu W, Zalutsky MR, Chilkoti A, Kraus VB, Setton LA. A thermally responsive biopolymer for intra-articular drug delivery. J Control Release 2006; 115:175-82. [PMID: 16959360 DOI: 10.1016/j.jconrel.2006.07.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 07/02/2006] [Accepted: 07/21/2006] [Indexed: 11/16/2022]
Abstract
Intra-articular drug delivery is the preferred standard for targeting pharmacologic treatment directly to joints to reduce undesirable side effects associated with systemic drug delivery. In this study, a biologically based drug delivery vehicle was designed for intra-articular drug delivery using elastin-like polypeptides (ELPs), a biopolymer composed of repeating pentapeptides that undergo a phase transition to form aggregates above their transition temperature. The ELP drug delivery vehicle was designed to aggregate upon intra-articular injection at 37 degrees C, and form a drug 'depot' that could slowly disaggregate and be cleared from the joint space over time. We evaluated the in vivo biodistribution and joint half-life of radiolabeled ELPs, with and without the ability to aggregate, at physiological temperatures encountered after intra-articular injection in a rat knee. Biodistribution studies revealed that the aggregating ELP had a 25-fold longer half-life in the injected joint than a similar molecular weight protein that remained soluble and did not aggregate. These results suggest that the intra-articular joint delivery of ELP-based fusion proteins may be a viable strategy for the prolonged release of disease-modifying protein drugs for osteoarthritis and other arthritides.
Collapse
Affiliation(s)
- Helawe Betre
- Department of Biomedical Engineering, 136 Hudson Hall, Box 90821, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
36
|
Literature Alerts. Drug Deliv 2005. [DOI: 10.1080/10717540500201502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|