1
|
Yabbarov NG, Mollaev MD, Zabolotskii AI, Mazalev DA, Gorokhovets NV, Sokol MB, Mollaeva MR, Fomicheva MV, Pshenichnikova AB, Nikolskaya ED. Obtaining and Purifying the Recombinant Domain III of Human Alpha-Fetoprotein. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822080087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Synergetic Enhancement of Tumor Double-Targeted MRI Nano-Probe. Int J Mol Sci 2022; 23:ijms23063119. [PMID: 35328540 PMCID: PMC8955029 DOI: 10.3390/ijms23063119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
The conventional targeted delivery of chemotherapeutic and diagnostic agents utilizing nanocarriers is a promising approach for cancer theranostics. Unfortunately, this approach often faces hindered tumor access that decreases the therapeutic index and limits the further clinical translation of a developing drug. Here, we demonstrated a strategy of simultaneously double-targeting the drug to two distinct cites of tumor tissue: the tumor endothelium and cell surface receptors. We used fourth-generation polyamideamine dendrimers modified with a chelated Gd and functionalized with selectin ligand and alpha-fetoprotein receptor-binding peptide. According to the proposed strategy, IELLQAR peptide promotes the conjugate recruitment to the tumor inflammatory microenvironment and enhances extravasation through the interaction of nanodevice with P- and E-selectins expressed by endothelial cells. The second target moiety-alpha-fetoprotein receptor-binding peptide-enhances drug internalization into cancer cells and the intratumoral retention of the conjugate. The final conjugate contained 18 chelated Gd ions per dendrimer, characterized with a 32 nm size and a negative surface charge of around 18 mV. In vitro contrasting properties were comparable with commercially available Gd-chelate: r1 relaxivity was 3.39 for Magnevist and 3.11 for conjugate; r2 relaxivity was 5.12 for Magnevist and 4.81 for conjugate. By utilizing this dual targeting strategy, we demonstrated the increment of intratumoral accumulation, and a remarkable enhancement of antitumor effect, resulting in high-level synergy compared to monotargeted conjugates. In summary, the proposed strategy utilizing tumor tissue double-targeting may contribute to an enhancement in drug and diagnostic accumulation in aggressive tumors.
Collapse
|
3
|
Mollaev M, Zabolotskii A, Gorokhovets N, Nikolskaya E, Sokol M, Tsedilin A, Mollaeva M, Chirkina M, Kuvaev T, Pshenichnikova A, Yabbarov N. Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli. J Genet Eng Biotechnol 2021; 19:155. [PMID: 34648110 PMCID: PMC8517049 DOI: 10.1186/s43141-021-00265-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 03/05/2023]
Abstract
Background Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in E. coli due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein. Results Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in E. coli, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture. Conclusions A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00265-5.
Collapse
Affiliation(s)
- Murad Mollaev
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 Vernadsky avenue, Moscow, 119454, Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Laboratory of Molecular Immunology, 1 Samory Mashela street, Moscow, 117997, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia
| | - Artur Zabolotskii
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| | - Neonila Gorokhovets
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya street, Moscow, 119991, Russia
| | - Elena Nikolskaya
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Maria Sokol
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Andrey Tsedilin
- Fundamentals of Biotechnology Federal Research Center, RAS, 33 Leninsky avenue, Moscow, 119071, Russia
| | - Mariia Mollaeva
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Margarita Chirkina
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Timofey Kuvaev
- National Research Center "Kurchatov Institute", Research Institute for Genetics and Selection of Industrial Microorganisms, 1 1-Y Dorozhnyy Proyezd, Moscow, 117545, Russia
| | - Anna Pshenichnikova
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 Vernadsky avenue, Moscow, 119454, Russia
| | - Nikita Yabbarov
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia. .,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia.
| |
Collapse
|
4
|
Lin B, Dong X, Wang Q, Li W, Zhu M, Li M. AFP-Inhibiting Fragments for Drug Delivery: The Promise and Challenges of Targeting Therapeutics to Cancers. Front Cell Dev Biol 2021; 9:635476. [PMID: 33898423 PMCID: PMC8061420 DOI: 10.3389/fcell.2021.635476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha fetoprotein (AFP) plays a key role in stimulating the growth, metastasis and drug resistance of hepatocellular carcinoma (HCC). AFP is an important target molecule in the treatment of HCC. The application of AFP-derived peptides, AFP fragments and recombinant AFP (AFP-inhibiting fragments, AIFs) to inhibit the binding of AFP to intracellular proteins or its receptors is the basis of a new strategy for the treatment of HCC and other cancers. In addition, AIFs can be combined with drugs and delivery agents to target treatments to cancer. AIFs conjugated to anticancer drugs not only destroy cancer cells with these drugs but also activate immune cells to kill cancer cells. Furthermore, AIF delivery of drugs relieves immunosuppression and enhances chemotherapy effects. The synergism of immunotherapy and targeted chemotherapy is expected to play an important role in enhancing the treatment effect of patients with cancer. AIF delivery of drugs will be an available strategy for the targeted treatment of cancer in the future.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China.,Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
5
|
Cellular internalization of targeted and non-targeted delivery systems for contrast agents based on polyamidoamine dendrimers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2835-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Mollaev M, Gorokhovets N, Nikolskaya E, Faustova M, Zabolotsky A, Zhunina O, Sokol M, Zamulaeva I, Severin E, Yabbarov N. Type of pH sensitive linker reveals different time-dependent intracellular localization, in vitro and in vivo efficiency in alpha-fetoprotein receptor targeted doxorubicin conjugate. Int J Pharm 2019; 559:138-146. [DOI: 10.1016/j.ijpharm.2018.12.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022]
|
7
|
Mollaev M, Gorokhovets N, Nikolskaya E, Faustova M, Zabolotsky A, Sokol M, Tereshenko O, Zhunina O, Shvets V, Severin E, Yabbarov N. Recombinant alpha-fetoprotein receptor-binding domain co-expression with polyglutamate tags facilitates in vivo folding in E. coli. Protein Expr Purif 2017; 143:77-82. [PMID: 29127003 DOI: 10.1016/j.pep.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 11/29/2022]
Abstract
A wide range of methods are known to increase the prokaryotic intracellular recombinant proteins solubility, for instance, growth at low temperature, supplementation of culture media with "chemical chaperones" (proline, glycine-betaine, and trehalose), co-expression with chaperones or highly soluble fusion partners. As an alternative, we have introduced the polyglutamate tag, which, as it has been shown, increased the protein solubility and facilitated folding. In this study we evaluated the minimal quantity of high density negatively charged EEEEVE amino acid repeats (pGlu) necessary to switch the recombinant receptor-binding domain of human alpha-fetoprotein (rbdAFP) expression almost entirely from the inclusion bodies to the soluble cytoplasmic fraction in E. coli. For this purpose, genetic constructs based on pET vectors coding rbdAFP and containing from 1 to 4 additional EEEEVE repeats at the C-terminus have been prepared. It was found that 3 pGlu repeats is the minimal number, that leads to a complete shift of the expression to the soluble cytoplasmic fraction in E. coli SHuffle Express T7 while 4 repeats were required for that in E. coli BL21(DE3). The rbdAFP contained 4 pGlu repeats was purified making use of ion-exchange chromatography and characterized by circular dichroism and ability to bind and accumulate in AFP receptor positive cancer cells in order to check for the structural and specific activity alterations related to the additional polyanionic sequence introduction.
Collapse
Affiliation(s)
- Murad Mollaev
- Moscow Technological University, Institute of Fine Chemical Technologies, 119571, Moscow, Russia
| | - Neonila Gorokhovets
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia
| | - Elena Nikolskaya
- A. Tsyb Medical Radiological Research Center, 249036, Obninsk, Russia
| | - Maria Faustova
- Moscow Technological University, Institute of Fine Chemical Technologies, 119571, Moscow, Russia
| | - Arthur Zabolotsky
- Moscow Technological University, Institute of Fine Chemical Technologies, 119571, Moscow, Russia
| | - Maria Sokol
- ANO Institute for Molecular Diagnostics, 117149, Moscow, Russia
| | | | - Olga Zhunina
- ANO Institute for Molecular Diagnostics, 117149, Moscow, Russia
| | - Vitaliy Shvets
- Moscow Technological University, Institute of Fine Chemical Technologies, 119571, Moscow, Russia
| | - Evgeniy Severin
- ANO Institute for Molecular Diagnostics, 117149, Moscow, Russia
| | - Nikita Yabbarov
- A. Tsyb Medical Radiological Research Center, 249036, Obninsk, Russia.
| |
Collapse
|
8
|
Nikolskaya ED, Zhunina OA, Yabbarov NG, Shvets VI, Krugliy BI, Severin ES. Development of target delivery system based on actinomycin class drugs and recombinant alpha-fetoprotein. DOKL BIOCHEM BIOPHYS 2017; 473:148-150. [PMID: 28510139 DOI: 10.1134/s1607672917020156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 11/23/2022]
Abstract
A recombinant alpha-fetoprotein (rAFP) was obtained in the yeast P. pastoris system, and its functional activity was confirmed. A method for producing polymer particles loaded with dactinomycin was developed, and a conjugate of these nanoparticles with rAFP was synthesized. The efficiency of the obtained conjugate on the HeLa, SKOV3, and MG-63 tumor cells and the absence of toxicity on the normal cells was shown. Experiments in vivo demonstrated a significant increase in the antitumor efficacy of the conjugate at a lower general toxicity as compared to the commercially available dactinomycin.
Collapse
Affiliation(s)
- E D Nikolskaya
- Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia.
| | - O A Zhunina
- Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - N G Yabbarov
- Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - V I Shvets
- Moscow State University of Fine Chemical Technologies (MITHT), Moscow, 119571, Russia
| | - B I Krugliy
- Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - E S Severin
- Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| |
Collapse
|
9
|
The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins. Tumour Biol 2016; 37:12697-12711. [DOI: 10.1007/s13277-016-5131-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023] Open
|
10
|
Mizejewski GJ. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets. J Drug Target 2015; 23:538-51. [DOI: 10.3109/1061186x.2015.1015538] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Severin ES. New approaches to targeted drug delivery to tumour cells. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Yabbarov NG, Posypanova GA, Vorontsov EA, Popova ON, Severin ES. Targeted delivery of doxorubicin: Drug delivery system based on PAMAM dendrimers. BIOCHEMISTRY (MOSCOW) 2013; 78:884-94. [DOI: 10.1134/s000629791308004x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Yabbarov N, Posypanova G, Vorontsov E, Obydenny S, Severin E. A new system for targeted delivery of doxorubicin into tumor cells. J Control Release 2013; 168:135-41. [DOI: 10.1016/j.jconrel.2013.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/26/2022]
|
14
|
Posypanova GA, Makarov VA, Savvateeva MV, Bereznikova AV, Severin ES. The receptor binding fragment of alpha-fetoprotein is a promising new vector for the selective delivery of antineoplastic agents. J Drug Target 2013; 21:458-65. [DOI: 10.3109/1061186x.2013.765441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Mizejewski GJ. Review of the adenocarcinoma cell surface receptor for human alpha-fetoprotein; proposed identification of a widespread mucin as the tumor cell receptor. Tumour Biol 2013; 34:1317-36. [PMID: 23446764 DOI: 10.1007/s13277-013-0704-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/10/2013] [Indexed: 02/06/2023] Open
Abstract
The identification of a tumor cell receptor for alpha-fetoprotein (AFP) has long been sought in the field of medicine. The uptake and endocytosis of AFP by rat tumor cells in 1983 sparked a series of confirmatory reports which were extended to include multiple tumor types in rats, mice, and humans. The following year, French investigators characterized the binding properties of the AFP receptor but they did not purify and characterize the receptor. It was not until 1991-1992 that an AFP receptor was partially purified and characterized from both human monocytes and breast cancer cells. By 1993, monoclonal antibodies had been raised against the "AFP receptor" derived from breast cancer extracts with claims that the receptor was a widespread oncoprotein biomarker for cancer. To date, that receptor has yet to be identified due to its complex multimeric structure and carbohydrate composition. The present report will review the literature of the multiple AFP receptors previously including their cellular uptake, transmembrane passage, and partial biochemical characterization. . In addition, evidence derived from computer modeling, proteolytic/fragmentation cleavage patterns, domain structure analysis, and protein binding software analysis will be presented in a proposed identification of a widespread protein/gene family of transmembrane proteins which fits many, if not most, of the criteria attributed to the AFP receptor. The proposed receptor protein family is tentatively identified as an epithelial cell surface mucin constituting one (or more) of many classes of single-pass transmembrane proteins. Present data do not support the concept that the AFP receptor is a "universal" tumor receptor and/or biomarker, but rather a widespread mucin protein that functions primarily in protecting and lubricating epithelial mucosal layers, and engaging in signal transduction; the mucin only binds AFP as a molecule serving in a subordinate or ancillary function.
Collapse
Affiliation(s)
- G J Mizejewski
- Wadsworth Center, Division of Translational Medicine, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA.
| |
Collapse
|
16
|
New protein vector ApE1 for targeted delivery of anticancer drugs. J Biomed Biotechnol 2012; 2012:469756. [PMID: 22649278 PMCID: PMC3357585 DOI: 10.1155/2012/469756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 11/21/2022] Open
Abstract
A new chimeric gene ApE1 encoding the receptor-binding domain of the human alpha-fetoprotein fused to a sequence of 22 glutamic acid residues was constructed. A new bacterial producer strain E. coli SHExT7 ApE1 was selected for ApE1 production in a soluble state. A simplified method was developed to purify ApE1 from bacterial biomass. It was shown that the new vector protein selectively interacts with AFP receptors on the tumor cell surface and can be efficiently accumulated in tumor cells. In addition, ApE1 was shown to be stable in storage and during its chemical modification. An increased number of carboxyl groups in the molecule allows the production of cytotoxic compound conjugates with higher drug-loading capacity and enhanced tumor targeting potential.
Collapse
|
17
|
Godovannyi AV, Vorontsov EA, Gukasova NV, Pozdnyakova NV, Vasilenko EA, Yabbarov NG, Dubovik EG, Severin SE, Severin ES, Gnuchev NV. Targeted delivery of paclitaxel-loaded recombinant α-fetoprotein fragment-conjugated nanoparticles to tumor cells. DOKL BIOCHEM BIOPHYS 2011; 439:158-60. [PMID: 21928134 DOI: 10.1134/s160767291104003x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Indexed: 11/22/2022]
Affiliation(s)
- A V Godovannyi
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334 Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu CH, Sui MH, Tang JB, Shen YQ. What can we learn from virus in designing nonviral gene vectors. CHINESE JOURNAL OF POLYMER SCIENCE 2011. [DOI: 10.1007/s10118-011-1047-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Setiyono A, Budiyati AD, Purwantomo S, Anggelia MR, Fanany I, Wibowo GA, Bachtiar I, Utama A, Tai S. Immunoregulatory effects of AFP domains on monocyte-derived dendritic cell function. BMC Immunol 2011; 12:4. [PMID: 21235824 PMCID: PMC3027196 DOI: 10.1186/1471-2172-12-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 01/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background Alpha-fetoprotein (AFP) is a tumor-associated glycoprotein that functions in regulation of both ontogenic and oncogenic growth. Recent study showed that AFP can induce apoptosis or impair monocyte-derived dendritic cell (MDDC) function. However, it is still unclear which AFP domain (D-AFP) plays major role in this function. Results As expected monocytes cultured in the presence of Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) and Interleukin-4 (IL-4) developed into MDDC. Up-regulation of HLA-DR and CD11c as well as loss of CD14 molecules could be observed. Full length AFP (FL-AFP), domain 2 AFP (D2-AFP) and D3-AFP, but not D1-AFP, significantly inhibited the expression of HLA-DRhigh/CD11chigh and CD80+/CD86high molecules. In contrast, CD83 expression was substantially down-regulated in all samples. Expression of CD40 was significantly suppressed by FL-AFP but not by any D-AFPs. Finally, both FL-AFP and D-AFP impaired the MDDC ability to secrete IL-12 (p70). Conclusions D2- and D3- but not D1-AFP extensively suppresses the MDDC function. All the recombinant AFP proteins impaired the ability of MDDC to secrete IL-12.
Collapse
Affiliation(s)
- Agus Setiyono
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mizejewski GJ. Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family. Tumour Biol 2010; 32:241-58. [PMID: 21120646 DOI: 10.1007/s13277-010-0134-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/07/2010] [Indexed: 11/28/2022] Open
Abstract
The identification of a receptor for alpha-fetoprotein (AFP) has long been sought in the field of medicine. The uptake and endocytosis of AFP by rat tumor cells in 1984 sparked a series of confirmatory reports and the original studies were then extended to include multiple tumor types in rats, mice, and humans. The following year, French investigators partially characterized the binding properties of the AFP receptor, but they were not able to purify the receptor. It was not until 1991-1992 that an AFP receptor was partially purified and characterized from both human monocytes and breast cancer cells. By 1993, a monoclonal antibody had been raised against the AFP receptor produced from a breast cancer extract with claims that the receptor was a widespread (universal) oncofetal biomarker for cancer. However, that receptor has yet to be cloned and/or purified due to its complex multimeric binding interactions and associations. The present report will review the literature of the multiple putative AFP receptors described to date, the cellular uptake and endocytosis of AFP, and the biochemical characterization of these putative cell-surface proteins. In addition, evidence derived from computer modeling, proteolytic degradation patterns, and amino acid sequence analysis will be presented in a proposed identification of a family of multi-ligand binding receptors; this family fits many, if not most, of the criteria required for an AFP receptor. The purposed receptor protein family is tentatively identified as the Scavenger receptors which comprise several classes of single- and double-pass integral transmembrane proteins. Present data do not support the concept that the AFP receptor is a "universal" tumor receptor and/or biomarker.
Collapse
Affiliation(s)
- Gerald J Mizejewski
- Wadsworth Center, Division of Translational Medicine, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA.
| |
Collapse
|