1
|
Agwa MM, Marzouk RE, Sabra SA. Advances in active targeting of ligand-directed polymeric nanomicelles via exploiting overexpressed cellular receptors for precise nanomedicine. RSC Adv 2024; 14:23520-23542. [PMID: 39071479 PMCID: PMC11273262 DOI: 10.1039/d4ra04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Many of the utilized drugs which already exist in the pharmaceutical sector are hydrophobic in nature. These drugs are characterized by being poorly absorbed and difficult to formulate in aqueous environments with low bioavailability, which could result in consuming high and frequent doses in order to fulfil the required therapeutic effect. As a result, there is a decisive demand to find modern alternatives to overcome all these drawbacks. Self-assembling polymeric nanomicelles (PMs) with their unique structure appear to be a fascinating choice as a pharmaceutical carrier system for improving the solubility & bioavailability of many drugs. PMs as drug carriers have many advantages including suitable size, high stability, prolonged circulation time, elevated cargo capacity and controlled therapeutic release. Otherwise, the pathological features of some diseased cells, like cancer, allow PMs with particle size <200 nm to be passively uptaken via enhanced permeability and retention phenomenon (EPR). However, the passive targeting approach was proven to be insufficient in many cases. Consequently, the therapeutic efficiency of these PMs can be further reinforced by enhancing their cellular internalization via incorporating targeting ligands. These targeting ligands can enhance the assemblage of loaded cargos in the intended tissues via receptor-mediated endocytosis through exploiting receptors robustly expressed on the exterior of the intended tissue while minimizing their toxic effects. In this review, the up-to-date approaches of harnessing active targeting ligands to exploit certain overexpressed receptors will be summarized concerning the functionalization of the exterior of PMs for ameliorating their targeting potential in the scope of nanomedicine.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El-Behooth St, Dokki Giza 12622 Egypt +202 33370931 +202 33371635
| | - Rehab Elsayed Marzouk
- Medical Biochemistry Department, Faculty of Medicine, Helwan University Helwan Cairo Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| |
Collapse
|
2
|
Kashyap A, Kumari M, Singh A, Mukherjee K, Maity D. Current development of theragnostic nanoparticles for women's cancer treatment. Biomed Mater 2024; 19:042001. [PMID: 38471150 DOI: 10.1088/1748-605x/ad3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical industry, nanoparticles (NPs-exclusively small particles with size ranging from 1-100 nanometres) are recently employed as powerful tools due to their huge potential in sophisticated and enhanced cancer theragnostic (i.e. therapeutics and diagnostics). Cancer is a life-threatening disease caused by carcinogenic agents and mutation in cells, leading to uncontrolled cell growth and harming the body's normal functioning while affecting several factors like low levels of reactive oxygen species, hyperactive antiapoptotic mRNA expression, reduced proapoptotic mRNA expression, damaged DNA repair, and so on. NPs are extensively used in early cancer diagnosis and are functionalized to target receptors overexpressing cancer cells for effective cancer treatment. This review focuses explicitly on how NPs alone and combined with imaging techniques and advanced treatment techniques have been researched against 'women's cancer' such as breast, ovarian, and cervical cancer which are substantially occurring in women. NPs, in combination with numerous imaging techniques (like PET, SPECT, MRI, etc) have been widely explored for cancer imaging and understanding tumor characteristics. Moreover, NPs in combination with various advanced cancer therapeutics (like magnetic hyperthermia, pH responsiveness, photothermal therapy, etc), have been stated to be more targeted and effective therapeutic strategies with negligible side effects. Furthermore, this review will further help to improve treatment outcomes and patient quality of life based on the theragnostic application-based studies of NPs in women's cancer treatment.
Collapse
Affiliation(s)
- Ananya Kashyap
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Madhubala Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Arnika Singh
- Department of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, IN 46202, United States of America
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, IN 46202, United States of America
| |
Collapse
|
3
|
Yi SL, Li ZL, Gong YC, Xiong XY. Inhibiting Multidrug Resistance with Transferrin-Targeted Polymersomes through Optimization of Ligand Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15920-15931. [PMID: 37922445 DOI: 10.1021/acs.langmuir.3c01726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Transferrin-conjugated polymersomes, transferrin-biotin/avidin/biotin-Pluronic F127-poly(lactic acid) (Tf-F127-PLA), were successfully prepared through a biotin-avidin bridging technique to study their ability to inhibit multidrug resistance of cancer cells. Hydrophilic doxorubicin (DOX) was selected as the model drug to be loaded into Tf-F127-PLA polymersomes. DOX loaded in Tf-F127-PLA polymersomes was released fast initially, followed by a slow release. The effect of the transferrin ligand density of Tf-F127-PLA/DOX polymersomes on their targeting properties was studied by both cytotoxicity and cellular uptake assays against A549 lung cancer cells. It was shown that Tf-F127-PLA/DOX polymersomes had better targeting ability than nontargeted drug-loaded polymersomes. Furthermore, Tf-F127-PLA/DOX polymersomes with 2% Tf molar content have more effective antitumor activity and a higher cellular uptake than those with 4 and 5% Tf molar content. 2% Tf-F127-PLA/DOX polymersomes also exhibited better anticancer ability in multidrug resistant cancer cells A549/ADR than nontargeted PLA-F127-PLA/DOX polymersomes. It was further proved that the endocytosis of polymersomes by A549/ADR cells was an energy-dependent endocytosis process, which was related to clathrin, macrocytosis, and caveolin. Also, the endocytosis of Tf-F127-PLA/DOX polymersomes was proven to be mediated by the transferrin receptor.
Collapse
Affiliation(s)
- Shui Ling Yi
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zi Ling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yan Chun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiang Yuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| |
Collapse
|
4
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
5
|
Wang P, Wang Y, Xia X, Huang W, Yan D. Redox-responsive drug-inhibitor conjugate encapsulated in DSPE-PEG 2k micelles for overcoming multidrug resistance to chemotherapy. Biomater Sci 2023. [PMID: 37133364 DOI: 10.1039/d3bm00429e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Multidrug resistance (MDR) is a major cause of chemotherapy failure in cancer treatment. P-glycoprotein (P-gp) inhibitors are helpful for chemotherapy drugs to overcome tumor MDR effectively. With the traditional physical mixing of chemotherapy drugs and inhibitors, it is difficult to achieve satisfactory results due to the different pharmacokinetics and physicochemical properties between the two of them. Herein, we prepared a novel drug-inhibitor conjugate prodrug (PTX-ss-Zos) from a cytotoxin (PTX) and a third-generation P-gp inhibitor (Zos) linked with a redox-responsive disulfide. Then, PTX-ss-Zos was encapsulated in DSPE-PEG2k micelles to form stable and uniform nanoparticles (PTX-ss-Zos@DSPE-PEG2k NPs). PTX-ss-Zos@DSPE-PEG2k NPs could be cleaved by the high-concentration GSH in cancer cells and release PTX and Zos simultaneously to inhibit MDR tumor growth synergistically without apparent systemic toxicity. The in vivo evaluation experiments exhibited that the tumor inhibition rates (TIR) of PTX-ss-Zos@DSPE-PEG2k NPs were high up to 66.5% for HeLa/PTX tumor-bearing mice. This smart nanoplatform would bring new hope for cancer treatment in clinical trials.
Collapse
Affiliation(s)
- Penghui Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Kim CH, Lee S, Choi JY, Lyu MJ, Jung HM, Goo YT, Kang MJ, Choi YW. Functionalized Lipid Nanocarriers for Simultaneous Delivery of Docetaxel and Tariquidar to Chemoresistant Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16030349. [PMID: 36986449 PMCID: PMC10058271 DOI: 10.3390/ph16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The simultaneous drug delivery efficiency of a co-loaded single-carrier system of docetaxel (DTX)- and tariquidar (TRQ)-loaded nanostructured lipid carrier (NLC) functionalized with PEG and RIPL peptide (PRN) (D^T-PRN) was compared with that of a physically mixed dual-carrier system of DTX-loaded PRN (D-PRN) and TRQ-loaded PRN (T-PRN) to overcome DTX mono-administration-induced multidrug resistance. NLC samples were prepared using the solvent emulsification evaporation technique and showed homogeneous spherical morphology, with nano-sized dispersion (<220 nm) and zeta potential values of −15 to −7 mV. DTX and/or TRQ was successfully encapsulated in NLC samples (>95% encapsulation efficiency and 73–78 µg/mg drug loading). In vitro cytotoxicity was concentration-dependent; D^T-PRN exhibited the highest MDR reversal efficiency, with the lowest combination index value, and increased the cytotoxicity and apoptosis in MCF7/ADR cells by inducing cell-cycle arrest in the G2/M phase. A competitive cellular uptake assay using fluorescent probes showed that, compared to the dual nanocarrier system, the single nanocarrier system exhibited better intracellular delivery efficiency of multiple probes to target cells. In the MCF7/ADR-xenografted mouse models, simultaneous DTX and TRQ delivery using D^T-PRN significantly suppressed tumor growth as compared to other treatments. A single co-loaded system for PRN-based co-delivery of DTX/TRQ (1:1, w/w) constitutes a promising therapeutic strategy for drug-resistant breast cancer cells.
Collapse
Affiliation(s)
- Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, 4700 Kneele St., Toronto, ON M3J 1P3, Canada
| | - Min Jeong Lyu
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyun Min Jung
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Current Update on Nanotechnology-Based Approaches in Ovarian Cancer Therapy. Reprod Sci 2023; 30:335-349. [PMID: 35585292 DOI: 10.1007/s43032-022-00968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is one of the leading causes of cancer-related deaths among women. The drawbacks of conventional therapeutic strategies encourage researchers to look for alternative strategies, including nanotechnology. Nanotechnology is one of the upcoming domains of science that is rechanneled towards targeted cancer therapy and diagnosis. Nanocarriers such as dendrimers, liposomes, polymer micelles, and polymer nanoparticles present distinct surface characteristics in morphology, surface chemistry, and mode of action that help differentiate normal and malignant cells, which paves the way for target-specific drug delivery. Similarly, nanoparticles have been strategically utilized as efficacious vehicles to deliver drugs that alter the epigenetic modifications in epigenetic therapy. Some studies suggest that the use of specialized target-modified nanoparticles in siRNA-based nanotherapy prevents internalization and improves the antitumor activity of siRNA by ensuring unrestrained entry of siRNA into the tumor vasculature and efficient intracellular delivery of siRNA. Moreover, research findings highlight the significance of utilizing nanoparticles as depots for photosensitive drugs in photodynamic therapy. The applicability of nanoparticles is further extended to medical imaging. They serve as contrast agents in combination with conventional imaging modalities such as MRI, CT, and fluorescence-based imaging to produce vivid and enhanced images of tumors. Therefore, this review aims to explore and delve deeper into the advent of various nanotechnology-based therapeutic and imaging techniques that provide non-invasive and effective means to tackle ovarian cancers.
Collapse
|
8
|
Co-Delivery of siRNA and Chemotherapeutic Drug Using 2C5 Antibody-Targeted Dendrimer-Based Mixed Micelles for Multidrug Resistant Cancers. Pharmaceutics 2022; 14:pharmaceutics14071470. [PMID: 35890364 PMCID: PMC9324017 DOI: 10.3390/pharmaceutics14071470] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) observed in tumors significantly hinders the efficacy of chemotherapy. Downregulation of efflux proteins, such as P-glycoprotein (P-gp), using small interfering RNA (siRNA) can be an effective way to minimize the resistance in tumors. In this study, monoclonal antibody 2C5 (mAb 2C5)-PEG7k-DOPE conjugates were post-inserted into the mixed dendrimer micelles containing generation 4 (G4) polyamidoamine (PAMAM)-PEG2k-DOPE and PEG5k-DOPE. The inherent amphiphilic nature of DOPE conjugates causes the copolymers to self-assemble to form a micelle, which can encapsulate hydrophobic chemotherapeutic drugs in its core. The siRNA electrostatically binds to the cationic charges on the G4 PAMAM dendrimer. The tumor-specific mAb 2C5 on the surface of these nano-preparations resulted in improved tumor targeting. This active targeting to tumors can cause increase in the drug and siRNA accumulation at the tumor site, and thereby minimizing the off-target effects. The micelles were shown to have higher cellular association and effectiveness in vitro. The immunomicelle preparation was also tested for cytotoxicity in breast (MDA-MB-231) and ovarian (SKOV-3TR) MDR cancer cell lines.
Collapse
|
9
|
Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021; 9:785937. [PMID: 34926430 PMCID: PMC8671936 DOI: 10.3389/fbioe.2021.785937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.
Collapse
Affiliation(s)
| | - Vrinda Garg
- Department of Physics, National Institute of Technology, Warangal, India
| | - Sourav Barman
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Chitrita Ghosh
- Department of Pharmacology, Burdwan Medical College and Hospital, Burdwan, India
| | | | - Surya K. Ghosh
- Department of Physics, National Institute of Technology, Warangal, India
| |
Collapse
|
10
|
Niza E, Ocaña A, Castro-Osma JA, Bravo I, Alonso-Moreno C. Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers (Basel) 2021; 13:3387. [PMID: 34298604 PMCID: PMC8304499 DOI: 10.3390/cancers13143387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Many therapeutic agents have failed in their clinical development, due to the toxic effects associated with non-transformed tissues. In this context, nanotechnology has been exploited to overcome such limitations, and also improve navigation across biological barriers. Amongst the many materials used in nanomedicine, with promising properties as therapeutic carriers, the following one stands out: biodegradable and biocompatible polymers. Polymeric nanoparticles are ideal candidates for drug delivery, given the versatility of raw materials and their feasibility in large-scale production. Furthermore, polymeric nanoparticles show great potential for easy surface modifications to optimize pharmacokinetics, including the half-life in circulation and targeted tissue delivery. Herein, we provide an overview of the current applications of polymeric nanoparticles as platforms in the development of novel nanomedicines for cancer treatment. In particular, we will focus on the raw materials that are widely used for polymeric nanoparticle generation, current methods for formulation, mechanism of action, and clinical investigations.
Collapse
Affiliation(s)
- Enrique Niza
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.N.); (J.A.C.-O.)
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain;
| | - José Antonio Castro-Osma
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.N.); (J.A.C.-O.)
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.N.); (J.A.C.-O.)
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.N.); (J.A.C.-O.)
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
11
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
12
|
Das T, Anand U, Pandey SK, Ashby CR, Assaraf YG, Chen ZS, Dey A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 2021; 55:100754. [PMID: 33691261 DOI: 10.1016/j.drup.2021.100754] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and β-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
13
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
14
|
Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells. Int J Pharm 2020; 590:119915. [DOI: 10.1016/j.ijpharm.2020.119915] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
|
15
|
The potential impact of trigonelline loaded micelles on Nrf2 suppression to overcome oxaliplatin resistance in colon cancer cells. Mol Biol Rep 2020; 47:5817-5829. [PMID: 32661875 DOI: 10.1007/s11033-020-05650-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) has a pivotal role in promoting chemoresistance by regulation of antioxidants and detoxification enzymes. Trigonelline is one of the major alkaloids in raw coffee which has been recently introduced as potent inhibitor of Nrf2. This study investigated the role of trigonelline and trigonelline loaded micelles in Nrf2 inhibition to break down oxaliplatin resistance in colon cancer cells. The PCL-PEG-PCL and PLA-PCL-PEG-PCL-PLA copolymers and trigonelline loaded micelles were prepared and characterized for fourier transforms infrared (FTIR), hydrogen nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance (13C-NMR) spectroscopy, particle size, zeta potential, scanning electron microscopy (SEM) and entrapment efficiency. Cell viability and apoptosis were evaluated by using MTT and flow cytometry assays, respectively. Nrf2, MRP1, NQO1, HO-1, Bax, and Bcl2 gene expressions were examined by qRT-PCR. Our results revealed that micelles had spherical shapes with narrow sizes and zeta potential indexes of - 9.06 ± 6.94 mV for trigonelline loaded 3Block and - 7.47 ± 6.08 mV for trigonelline loaded 5Block micelles. After Nrf2 inhibition by trigonelline, antioxidant response element (ARE) related gene expressions were decreased (p < 0.05) with a significantly higher impact by trigonelline loaded micelles (p < 0.05). Trigonelline loaded micelles also strongly decreased IC50 value of oxaliplatin in resistant colon cancer cells (p < 0.05). Furthermore, trigonelline loaded 5Block micelle increased oxaliplatin-induced apoptosis in a Nrf2/ARE dependent manner. Altogether, the current study suggests that delivery of trigonelline loaded micelles as potent Nrf2 inhibitors can be considered as a promising strategy to overcome oxaliplatin resistance in colon cancer patients.
Collapse
|
16
|
Yu J, Hu F, Zhu Q, Li X, Ren H, Fan S, Qian B, Zhai B, Yang D. PD-L1 monoclonal antibody-decorated nanoliposomes loaded with Paclitaxel and P-gp transport inhibitor for the synergistic chemotherapy against multidrug resistant gastric cancers. NANOSCALE RESEARCH LETTERS 2020; 15:59. [PMID: 32166458 PMCID: PMC7067943 DOI: 10.1186/s11671-019-3228-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Multidrug resistance (MDR) based on ATP-dependent efflux transporters (p-glycoprotein (p-gp)) remains a major obstacle in successful chemotherapy treatment. Herein, we have investigated the potential of PD-L1 mAb-conjugated nanoliposome to serve as a targeted delivery platform for the co-delivery of paclitaxel (PTX) and p-gp specific transport inhibitor (TQD, tariquidar) in drug-resistant gastric cancers. Two drugs, PTX and TQD, were co-loaded in a single vehicle in a precise ratio to enhance the prospect of combination chemotherapeutic effect. Cellular uptake study indicated that PD-PTLP had higher internalization efficiency in PD-L1 receptor overexpressing SGC7901/ADR cells than non-targeted PTLP. Highest synergy was observed at a weight fraction of 1/0.5 (PTX/TQD) and the combination of PTX and TQD resulted in obvious synergistic effect compared to that of individual drugs alone. Our in vitro results showed that TQD was effective in reversing the multidrug resistance in SGC7901/ADR cells. The IC50 value of PD-PTLP was 0.76 μg/ml compared to 6.58 μg/ml and 7.64 μg/ml for PTX and TQD, respectively. PD-TPLP triggered significantly higher levels of reactive oxygen species (ROS) and cell apoptosis compared to that of free PTX or TQD. Furthermore, the in vivo antitumor study showed that the combination chemotherapy of PD-PTLP displayed a significant inhibition of tumor burden of drug-resistant xenograft tumors with significantly higher terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Furthermore, free PTX resulted in significant increase in the levels of AST and ALT while PD-PTLP insignificantly different compared to that of control indicating the safety index. Overall, we believe that combination of anticancer drug with a p-gp inhibitor could provide a potential direction toward the treatment of drug-resistant gastric tumors.
Collapse
Affiliation(s)
- Jinling Yu
- Department of General Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Fengli Hu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Qiankun Zhu
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Xiaodong Li
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Haiyang Ren
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Shengjie Fan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Bo Qian
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Bo Zhai
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Dongdong Yang
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| |
Collapse
|
17
|
Li Y, Chen M, Yao B, Lu X, Zhang X, He P, Vasilatos SN, Ren X, Bian W, Yao C. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrug-resistant breast cancer therapy. J Mater Chem B 2019; 7:5814-5824. [PMID: 31495855 DOI: 10.1039/c9tb00651f] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Podophyllotoxin (PPT), a toxic polyphenol extracted from the roots of Podophyllum species, showed remarkable activity against P-glycoprotein (P-gp) mediated multidrug resistant (MDR) cancer cells. Many PPT-prodrugs based on nano-technology have been developed for increasing aqueous solubility and reducing the side effects of PPT; however, the sensitive linkers in almost all PPT-prodrugs were ester bonds, resulting in slow and incomplete drug release. We developed a redox/pH double-sensitive and tumor active targeted drug delivery system for PPT delivery, in which PPT was covalently coupled to T7-peptide (Pep) modified polyethylene glycol (PEG) or methoxy-polyethylene glycol (mPEG) through a disulfide bond to obtain the final polymer (Pep-PEG-SS-PPT or PEG-SS-PPT). The mixed micelles (Pep-SS-NPs) were made by mixing Pep-PEG-SS-PPT with PEG-SS-PPT, and the mixed micelles showed good size uniformity and high stability in serum solution. The in vitro release experiment showed that about (81.7 ± 2.8)% PPT was released from Pep-SS-NPs in 10 mM glutathione (GSH) at pH 7.4, and also about (64.6 ± 1.7)% PPT was released from Pep-SS-NPs at pH 5.0. In vitro cytotoxicity analysis suggested that Pep-SS-NPs exhibited 57- to 270-fold lower resistance index (RI) values for different drug-resistant cancer cell lines than paclitaxel (PTX) or docetaxel (DTX). The cell uptake assay indicated that the Pep-SS-NPs could significantly enhance the intracellular level of coumarin-6 compared to that of the control group. The maximum tolerated dose (MTD) of Pep-SS-NPs was increased greatly compared to that of free PPT (5.3-fold). In vivo research showed that Pep-SS-NPs significantly enhanced antitumor efficacy against MCF-7/ADR xenograft tumors compared to the control groups. These findings suggest that mixed micelles could be a potentially successful nanomedicine for MDR breast cancer therapy.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Mie Chen
- Department of general surgery, Pukou district central hospital, Pukou branch of jiangsu province hospital, China
| | - Bowen Yao
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xun Lu
- Milken School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Xiaoqing Zhang
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Peng He
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Shauna N Vasilatos
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaomei Ren
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Weihe Bian
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Chang Yao
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| |
Collapse
|
18
|
Willers C, Svitina H, Rossouw MJ, Swanepoel RA, Hamman JH, Gouws C. Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux. J Cancer Res Clin Oncol 2019; 145:1949-1976. [PMID: 31292714 DOI: 10.1007/s00432-019-02973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Efflux transporters of the adenosine triphosphate-binding cassette (ABC)-superfamily play an important role in the development of multidrug resistance (multidrug resistant; MDR) in cancer. The overexpression of these transporters can directly contribute to the failure of chemotherapeutic drugs. Several in vitro and in vivo models exist to screen for the efficacy of chemotherapeutic drugs against MDR cancer, specifically facilitated by efflux transporters. RESULTS This article reviews a range of efflux transporter-based MDR models used to test the efficacy of compounds to overcome MDR in cancer. These models are classified as either in vitro or in vivo and are further categorised as the most basic, conventional models or more complex and advanced systems. Each model's origin, advantages and limitations, as well as specific efflux transporter-based MDR applications are discussed. Accordingly, future modifications to existing models or new research approaches are suggested to develop prototypes that closely resemble the true nature of multidrug resistant cancer in the human body. CONCLUSIONS It is evident from this review that a combination of both in vitro and in vivo preclinical models can provide a better understanding of cancer itself, than using a single model only. However, there is still a clear lack of progression of these models from basic research to high-throughput clinical practice.
Collapse
Affiliation(s)
- Clarissa Willers
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Hanna Svitina
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Michael J Rossouw
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roan A Swanepoel
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Josias H Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
19
|
Ahmad A, Khan F, Mishra RK, Khan R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J Med Chem 2019; 62:10475-10496. [DOI: 10.1021/acs.jmedchem.9b00511] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Farheen Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| |
Collapse
|
20
|
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1476-1487. [DOI: 10.1080/21691401.2019.1601104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangping Yu
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Zhongcheng Mo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Henyang, China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
21
|
Sokolova E, Kutova O, Grishina A, Pospelov A, Guryev E, Schulga A, Deyev S, Balalaeva I. Penetration Efficiency of Antitumor Agents in Ovarian Cancer Spheroids: The Case of Recombinant Targeted Toxin DARPin-LoPE and the Chemotherapy Drug, Doxorubicin. Pharmaceutics 2019; 11:pharmaceutics11050219. [PMID: 31067739 PMCID: PMC6572593 DOI: 10.3390/pharmaceutics11050219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/10/2023] Open
Abstract
The efficiency of delivering a therapeutic agent into a tumor is among the crucial factors determining the prospects for its clinical use. This problem is particularly acute in the case of targeted antitumor agents since many of them are high-molecular-weight compounds. In this work, the penetration of therapeutic agents of two distinct molecular weights into the spheroids of ovarian adenocarcinoma overexpressing human epidermal growth factor receptor 2 (HER2) was studied. It was shown that the low-molecular-weight chemotherapy drug, doxorubicin (~0.5 kDa), effectively penetrates through almost the entire depth of a 300 to 400 μm spheroid, while the penetration depth of the HER2-specific recombinant targeted toxin, DARPin-LoPE (~42 kDa), is only a few surface layers of cells and does not exceed 70 μm. The low penetration of the targeted toxin into spheroid was shown along with a significant decrease in its efficiency against the three-dimensional tumor spheroid as compared with the two-dimensional monolayer culture. The approaches to increasing the accumulation of agents in the tumor are presented and prospects of their use in order to improve the effectiveness of therapy are discussed.
Collapse
Affiliation(s)
- Evgeniya Sokolova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- Laboratory of molecular immunology, Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklay St., Moscow 117997, Russia.
| | - Olga Kutova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Alena Grishina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Anton Pospelov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgeniy Guryev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Alexey Schulga
- Laboratory of molecular immunology, Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklay St., Moscow 117997, Russia.
| | - Sergey Deyev
- Laboratory of molecular immunology, Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklay St., Moscow 117997, Russia.
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
- Research Nuclear Reactor Center, National Research Tomsk Polytechnic University, 30 Lenin ave., Tomsk 634050, Russia.
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University "MEPhI", 31 Kashirskoe shosse, Moscow 115409, Russia.
| | - Irina Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
22
|
Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology 2019; 17:48. [PMID: 30943985 PMCID: PMC6448271 DOI: 10.1186/s12951-019-0479-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of "conventional" therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates.
Collapse
Affiliation(s)
| | - Magdalena Poplawska
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland.
| |
Collapse
|
23
|
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv 2018; 15:1127-1142. [DOI: 10.1080/17425247.2018.1537261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siddharth S. Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Abhay T. Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
24
|
Yang C, Qin Y, Tu K, Xu C, Li Z, Zhang Z. Star-shaped polymer of β‑cyclodextrin-g-vitamin E TPGS for doxorubicin delivery and multidrug resistance inhibition. Colloids Surf B Biointerfaces 2018; 169:10-19. [DOI: 10.1016/j.colsurfb.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022]
|
25
|
Wang B, Ma LY, Wang JQ, Lei ZN, Gupta P, Zhao YD, Li ZH, Liu Y, Zhang XH, Li YN, Zhao B, Chen ZS, Liu HM. Discovery of 5-Cyano-6-phenylpyrimidin Derivatives Containing an Acylurea Moiety as Orally Bioavailable Reversal Agents against P-Glycoprotein-Mediated Mutidrug Resistance. J Med Chem 2018; 61:5988-6001. [PMID: 29975529 DOI: 10.1021/acs.jmedchem.8b00335] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, United States
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, United States
| | - Yuan-Di Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhong-Hua Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ying Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ya-Nan Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bing Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, United States
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
26
|
Kozlu S, Sahin A, Ultav G, Yerlikaya F, Calis S, Capan Y. Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Wang T, Narayanaswamy R, Ren H, Gillespie JW, Petrenko VA, Torchilin VP. Phage-derived protein-mediated targeted chemotherapy of pancreatic cancer. J Drug Target 2017; 26:505-515. [PMID: 29132246 DOI: 10.1080/1061186x.2017.1405424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pancreatic cancer has been a life-threatening illness associated with high incidence and mortality rates. Paclitaxel (PCT) that causes mitotic arrest in cancer cells disrupting microtubule function is used for pancreatic cancer treatment. Nausea, anorexia and abdominal pain are some of the typical dose-limiting toxicity associated gastrointestinal side effects of the drug. Here, we present the use of polymeric mixed micelles to enable a targeted delivery of PCT and to provide additional advantages such as enhanced drug solubility, bioavailability and minimal dose-limiting toxicity. Also, these micelles self-assemble with pancreatic cancer cells-specific phage proteins P38, L1 and with the hydrophobic drug PCT resolving the issue of complex chemistry efforts normally needed for any conjugation. Our cytotoxicity and binding experiment results in vitro in 2 D and 3 D models suggested that the phage protein-targeted drug-loaded micelles bind and exhibit higher cell killing over the non-targeted ones.
Collapse
Affiliation(s)
- Tao Wang
- a Centre for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston , MA , USA
| | - Radhika Narayanaswamy
- a Centre for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston , MA , USA
| | - Huilan Ren
- a Centre for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston , MA , USA
| | - James W Gillespie
- b Department of Pathobiology , Auburn University , Auburn , AL , USA
| | - Valery A Petrenko
- b Department of Pathobiology , Auburn University , Auburn , AL , USA
| | - Vladimir P Torchilin
- a Centre for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston , MA , USA
| |
Collapse
|
28
|
Wang B, Zhao B, Chen ZS, Pang LP, Zhao YD, Guo Q, Zhang XH, Liu Y, Liu GY, Hao-Zhang, Zhang XY, Ma LY, Liu HM. Exploration of 1,2,3-triazole-pyrimidine hybrids as potent reversal agents against ABCB1-mediated multidrug resistance. Eur J Med Chem 2017; 143:1535-1542. [PMID: 29126726 DOI: 10.1016/j.ejmech.2017.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/21/2023]
Abstract
ABCB1-mediated multidrug resistance (MDR) is a principal obstacle for successful cancer chemotherapy. A series of pyrimidine-based hybrid molecules containing 1,2,3-triazole moiety were evaluated for their reversal activities against MDR. The majority of target compounds displayed moderate to great reversal potency. Among these compounds, compound 25 displayed the most potent reversal activity, about 7-fold more potent than Verapamil (VRP). Further mechanism studies revealed that compound 25 could obviously reverse paclitaxel (PTX) resistance in SW620/AD300 cells by increasing accumulation and extending maintenance of PTX. Our findings indicate that the 1,2,3-triazole-pyrimidine-based derivatives may serve as an interesting lead for the development of new potent and efficacious ABCB1-dependent MDR modulators.
Collapse
Affiliation(s)
- Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bing Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Lu-Ping Pang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuan-Di Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Guo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guang-Yao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hao-Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xin-Yuan Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
29
|
Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater 2017; 62:144-156. [PMID: 28842335 DOI: 10.1016/j.actbio.2017.08.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 01/08/2023]
Abstract
To concurrently suppress multidrug resistance (MDR) and metastasis of breast cancer cells, paclitaxel (PTX) and honokiol (HNK) were coencapsulated into pH-sensitive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) (PEOz-PLA). The physicochemical properties of dual drug-loaded PEOz-PLA micelles were characterized in size, drug loading and in vitro release. The efficiency of MDR reversal for the micelles was testified by synergetic enhancement of cytotoxicity and uptake by MCF-7/ADR cells. The flow cytometry and fluorescence polarization measurement results reinforced the conclusion that down-regulation of P-gp expression and increase of plasma membrane fluidity appeared to be possible mechanisms of MDR reversal by dual drug-loaded PEOz-PLA micelles. Further, the efficient inhibition of tumor metastasis by dual drug-loaded PEOz-PLA micelles was demonstrated by in vitro anti-invasion and anti-migration assessment in MDA-MB-231 cells and in vivo bioluminescence imaging in nude mice. The suppression of MDR and metastasis by the micelles was assigned to synergistic effects of pH-triggered drug release and HNK/PEOz-PLA-aroused P-gp inhibition, and pH-triggered drug release and PTX/HNK-aroused MMPs inhibition, respectively. In conclusion, our findings strengthen the usefulness of co-delivery of PTX and HNK by pH-responsive polymeric micelles for suppression of tumor MDR and metastasis. STATEMENT OF SIGNIFICANCE Multidrug resistance (MDR) and metastasis are considered to be two of the major barriers for successful chemotherapy. The combination of a chemotherapeutic drug with a modulator has emerged as a promising strategy for efficiently treating MDR cancer and preventing tumor metastasis. Herein, a dual drug (paclitaxel and honokiol)-loaded pH-sensitive polymeric micelle system based on PEOz-PLA was successfully fabricated to ensure that tumor MDR and metastasis could be concurrently suppressed, therefore achieving distinguishing endo/lysosomal pH from physiological pH by accelerating drug release and then enhancing the cytotoxicity of paclitaxel to drug-resistant tumor cells MCF-7/ADR by increasing cellular uptake of paclitaxel, preventing in vitro invasion and migration for MDA-MB-231 cells and in vivo metastasis in nude mice. Further, the mechanism of MDR reversal by dual drug-loaded PEOz-PLA micelles was elucidated to be down-regulation of P-gp expression and increase of plasma membrane fluidity of MCF-7/ADR cells. The present findings strengthen the usefulness of co-delivery of PTX and HNK by pH-responsive polymeric micelles for suppression of tumor MDR and metastasis.
Collapse
|
30
|
Qiu Q, Shi W, Li Z, Zhang B, Pan M, Cui J, Dai Y, Huang W, Qian H. Exploration of 2-((Pyridin-4-ylmethyl)amino)nicotinamide Derivatives as Potent Reversal Agents against P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2017; 60:2930-2943. [DOI: 10.1021/acs.jmedchem.6b01879] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qianqian Qiu
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Shi
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zheng Li
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bo Zhang
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Miaobo Pan
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Cui
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuxuan Dai
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenlong Huang
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of Drug Discovery
for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hai Qian
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of Drug Discovery
for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
31
|
Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017. [DOI: 10.1039/c7py00559h] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Application of 3D multicellular tumor spheroids to the investigation of polymer nanomedicines.
Collapse
Affiliation(s)
- Gianpiero Lazzari
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| |
Collapse
|