1
|
Shioiri T, Tsuchimoto J, Fukushige K, Takeuchi T, Naito M, Watanabe H, Sugiura N. Chondroitin sulfate liposome: clustering toward high functional efficiency. J Biochem 2024; 176:229-236. [PMID: 38861406 DOI: 10.1093/jb/mvae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Chondroitin sulfate (CS) is a linear polysaccharide chain of alternating residues of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc), modified with sulfate groups. Based on the structure, CS chains bind to bioactive molecules specifically and regulate their functions. For example, CS whose GalNAc is sulfated at the C4 position, termed CSA, and CS whose GalNAc is sulfated at both C4 and C6 positions, termed CSE, bind to a malaria protein VAR2CSA and receptor type of protein tyrosine phosphatase sigma (RPTPσ), respectively, in a specific manner. Here, we modified CSA and CSE chains with phosphatidylethanolamine (PE) at a reducing end, attached them to liposomes containing phospholipids and generated CSA and CSE liposomes. The CS-PE was incorporated into the liposome particles efficiently. Inhibition ELISA revealed specific interaction of CSA and CSE with recombinant VAR2CSA and RPTPσ, respectively, more efficiently than CS chains alone. Furthermore, CSE liposome was specifically incorporated into RPTPσ-expressing HEK293T cells. These results indicate CS liposome as a novel and efficient drug delivery system, especially for CS-binding molecules.
Collapse
Affiliation(s)
- Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Fukushige
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Takao Takeuchi
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Munekazu Naito
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
2
|
Egorova A, Shtykalova S, Maretina M, Freund S, Selutin A, Shved N, Selkov S, Kiselev A. Serum-Resistant Ternary DNA Polyplexes for Suicide Gene Therapy of Uterine Leiomyoma. Int J Mol Sci 2023; 25:34. [PMID: 38203202 PMCID: PMC10778803 DOI: 10.3390/ijms25010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Uterine leiomyoma (UL) is a prevalent benign tumor in women that frequently gives rise to a multitude of reproductive complications. The use of suicide gene therapy has been proposed as a highly promising method for treating UL. To achieve successful gene therapy, it is essential to develop carriers that can efficiently transport nucleic acids into targeted cells and tissues. The instability of polyplexes in blood and other biological fluids is a crucial factor to consider when using non-viral carriers. In this study, we present serum-resistant and cRGD-modified DNA complexes for targeted delivery genes to UL cells. Ternary polyplexes were formed by incorporating cystine-cross-linked polyglutamic acid modified with histidine residues. We employed two techniques in the production of cross-linked polyanionic coating: matrix polymerization and oxidative polycondensation. In this study, we investigated the physicochemical properties of ternary DNA complexes, including the size and zeta-potential of the nanoparticles. Additionally, we evaluated cellular uptake, toxicity levels, transfection efficiency and specificity in vitro. The study involved introducing the HSV-TK gene into primary UL cells as a form of suicide gene therapy modeling. We have effectively employed ternary peptide-based complexes for gene delivery into the UL organtypic model. By implementing in situ suicide gene therapy, the increase in apoptosis genes expression was detected, providing conclusive evidence of apoptosis occurring in the transfected UL tissues. The results of the study strongly suggest that the developed ternary polyplexes show potential as a valuable tool in the implementation of suicide gene therapy for UL.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Sofia Shtykalova
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Marianna Maretina
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Svetlana Freund
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Alexander Selutin
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Natalia Shved
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Sergei Selkov
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Anton Kiselev
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| |
Collapse
|
3
|
Lyu Y, Liu Y, He H, Wang H. Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering. Gels 2023; 9:gels9050431. [PMID: 37233022 DOI: 10.3390/gels9050431] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Silk fibroin (SF) is an excellent protein-based biomaterial produced by the degumming and purification of silk from cocoons of the Bombyx mori through alkali or enzymatic treatments. SF exhibits excellent biological properties, such as mechanical properties, biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and tunability, making it a versatile material widely applied in biological fields, particularly in tissue engineering. In tissue engineering, SF is often fabricated into hydrogel form, with the advantages of added materials. SF hydrogels have mostly been studied for their use in tissue regeneration by enhancing cell activity at the tissue defect site or counteracting tissue-damage-related factors. This review focuses on SF hydrogels, firstly summarizing the fabrication and properties of SF and SF hydrogels and then detailing the regenerative effects of SF hydrogels as scaffolds in cartilage, bone, skin, cornea, teeth, and eardrum in recent years.
Collapse
Affiliation(s)
- Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Houzhe He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
5
|
Chondroitin Sulfate and Its Derivatives: A Review of Microbial and Other Production Methods. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chondroitin sulfate (CS) is widely used across the world as a nutraceutical and pharmaceutical. Its high demand and potential limitations in current methods of extraction call for an alternative method of production. This review highlights glycosaminoglycan’s structure, its medical significance, animal extraction source, and the disadvantages of the extraction process. We cover alternative production strategies for CS and its precursor, chondroitin. We highlight chemical synthesis, chemoenzymatic synthesis, and extensively discuss how strains have been successfully metabolically engineered to synthesize chondroitin and chondroitin sulfate. We present microbial engineering as the best option for modern chondroitin and CS production. We also explore the biosynthetic pathway for chondroitin production in multiple microbes such as Escherichia coli, Bacillus subtilis, and Corynebacterium glutamicum. Lastly, we outline how the manipulation of pathway genes has led to the biosynthesis of chondroitin derivatives.
Collapse
|
6
|
Chondroitin Sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydr Polym 2022; 286:119305. [DOI: 10.1016/j.carbpol.2022.119305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
|
7
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer-based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021; 60:13225-13243. [PMID: 32893932 PMCID: PMC8247987 DOI: 10.1002/anie.202010282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, genetically engineered DNA has been tested as novel vaccination strategy against various diseases, including human immunodeficiency virus (HIV), hepatitis B, several parasites, and cancers. However, the clinical breakthrough of the technique is confined by the low transfection efficacy and immunogenicity of the employed vaccines. Therefore, carrier materials were designed to prevent the rapid degradation and systemic clearance of DNA in the body. In this context, biopolymers are a particularly promising DNA vaccine carrier platform due to their beneficial biochemical and physical characteristics, including biocompatibility, stability, and low toxicity. This article reviews the applications, fabrication, and modification of biopolymers as carrier medium for genetic vaccines.
Collapse
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Luise Fanslau
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Puneet Tyagi
- Dosage Form Design and DevelopmentBioPharmaceuticals DevelopmentR&DAstra ZenecaGaithersburgMD20878USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
8
|
Thompson M, Scholz C. Highly Branched Polymers Based on Poly(amino acid)s for Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1119. [PMID: 33925961 PMCID: PMC8145254 DOI: 10.3390/nano11051119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/16/2023]
Abstract
Polymers consisting of amino acid building blocks continue to receive consideration for biomedical applications. Since poly(amino acid)s are built from natural amino acids, the same building blocks proteins are made of, they are biocompatible, biodegradable and their degradation products are metabolizable. Some amino acids display a unique asymmetrical AB2 structure, which facilitates their ability to form branched structures. This review compares the three forms of highly branched polymeric structures: structurally highly organized dendrimers, dendrigrafts and the less organized, but readily synthesizable hyperbranched polymers. Their syntheses are reviewed and compared, methods of synthesis modulations are considered and variations on their traditional syntheses are shown. The potential use of highly branched polymers in the realm of biomedical applications is discussed, specifically their applications as delivery vehicles for genes and drugs and their use as antiviral compounds. Of the twenty essential amino acids, L-lysine, L-glutamic acid, and L-aspartic acid are asymmetrical AB2 molecules, but the bulk of the research into highly branched poly(amino acid)s has focused on the polycationic poly(L-lysine) with a lesser extent on poly(L-glutamic acid). Hence, the majority of potential applications lies in delivery systems for nucleic acids and this review examines and compares how these three types of highly branched polymers function as non-viral gene delivery vectors. When considering drug delivery systems, the small size of these highly branched polymers is advantageous for the delivery of inhalable drug. Even though highly branched polymers, in particular dendrimers, have been studied for more than 40 years for the delivery of genes and drugs, they have not translated in large scale into the clinic except for promising antiviral applications that have been commercialized.
Collapse
Affiliation(s)
| | - Carmen Scholz
- Department of Chemistry, University of Alabama in Huntsville, 301 Sparkman Dr., Huntsville, AL 35899, USA;
| |
Collapse
|
9
|
Kodama Y, Tokunaga A, Hashizume J, Nakagawa H, Harasawa H, Kurosaki T, Nakamura T, Nishida K, Nakashima M, Hashida M, Kawakami S, Sasaki H. Evaluation of transgene expression characteristics and DNA vaccination against melanoma metastasis of an intravenously injected ternary complex with biodegradable dendrigraft poly-L-lysine in mice. Drug Deliv 2021; 28:542-549. [PMID: 33685317 PMCID: PMC7946064 DOI: 10.1080/10717544.2021.1895904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We developed a biocompatible splenic vector for a DNA vaccine against melanoma. The splenic vector is a ternary complex composed of plasmid DNA (pDNA), biodegradable dendrigraft poly-L-lysine (DGL), and γ-polyglutamic acid (γ-PGA), the selective uptake of which by the spleen has already been demonstrated. The ternary complex containing pDNA encoding luciferase (pCMV-Luc) exhibited stronger luciferase activity for RAW264.7 mouse macrophage-like cells than naked pCMV-Luc. Although the ternary complex exhibited strong luciferase activity in the spleen after its tail vein injection, luciferase activity in the liver and spleen was significantly decreased by a pretreatment with clodronate liposomes, which depleted macrophages in the liver and spleen. These results indicate that the ternary complex is mainly transfected in macrophages and is a suitable formulation for DNA vaccination. We applied the ternary complex to a pUb-M melanoma DNA vaccine. The ternary complex containing pUb-M suppressed the growth of melanoma and lung metastasis by B16-F10 mouse melanoma cells. We also examined the acute and liver toxicities of the pUb-M ternary complex at an excess pDNA dose in mice. All mice survived the injection of the excess amount of the ternary complex. Liver toxicity was negligible in mice injected with the excess amount of the ternary complex. In conclusion, we herein confirmed that the ternary complex was mainly transfected into macrophages in the spleen after its tail vein injection. We also showed the prevention of melanoma metastasis by the DNA vaccine and the safety of the ternary complex.
Collapse
Affiliation(s)
- Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Ayako Tokunaga
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroo Nakagawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hitomi Harasawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Tadahiro Nakamura
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuru Hashida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
10
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer‐based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Luise Fanslau
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Puneet Tyagi
- Dosage Form Design and Development BioPharmaceuticals Development R&D Astra Zeneca Gaithersburg MD 20878 USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
11
|
Subia B, Reinisalo M, Dey N, Tavakoli S, Subrizi A, Ganguli M, Ruponen M. Nucleic acid delivery to differentiated retinal pigment epithelial cells using cell-penetrating peptide as a carrier. Eur J Pharm Biopharm 2019; 140:91-99. [PMID: 31085311 DOI: 10.1016/j.ejpb.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/16/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Nucleic acid delivery to the eye is a promising treatment strategy for many retinal disorders. In this manuscript, retinal gene delivery with non-coated and chondroitin sulphate (CS) coated amphipathic and cationic peptides was tested. The transfection and gene knockdown efficiencies were evaluated in different retinal pigment epithelial (RPE) cell models including both dividing and differentiated cells. In addition, the mobility of peptide-based gene delivery systems was examined in porcine vitreous by particle tracking analysis. The results indicate that amphipathic and cationic peptides are safe in vitro and are capable of high transgene expression and gene knockdown in dividing cells. We further demonstrate that incorporation of CS improves the efficiency of gene delivery of peptide-based systems. Most importantly, the transgene expression mediated by both non-coated and CS coated peptides was high in differentiated as well as in human primary RPE cells which are typically difficult to transfect. Coating of peptide-based gene delivery systems with CS improved diffusion in the vitreous and enhanced the stability of the polyplexes. The results indicate that a peptide-based system can be fine-tuned as a promising approach for retinal gene delivery.
Collapse
Affiliation(s)
- Bano Subia
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland.
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Namit Dey
- Delhi Technological University, Delhi 110042, India
| | | | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 800, Denmark
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110021, India
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
12
|
Nisakar D, Vij M, Pandey T, Natarajan P, Sharma R, Mishra S, Ganguli M. Deciphering the Role of Chondroitin Sulfate in Increasing the Transfection Efficiency of Amphipathic Peptide-Based Nanocomplexes. ACS Biomater Sci Eng 2018; 5:45-55. [PMID: 33405865 DOI: 10.1021/acsbiomaterials.8b00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosaminoglycans, both cell-surface and exogenous, can interfere with DNA delivery efficiency of nonviral carrier systems. In this work, we report an extensive comparative study to explore the effect of exogenously added chondroitin sulfate on biophysical characteristics, cellular uptake, transfection efficiency, and intracellular trafficking of nanocomplexes formed using primary and secondary amphipathic peptides developed in our laboratory. Our results indicate that the presence of exogenous chondroitin sulfate exhibits differential enhancement in transfection efficiency of the amphipathic peptides depending upon their chemical nature. The enhancement was more pronounced in primary amphipathic peptide-based nanocomplexes as compared to the secondary counterpart. This difference can be attributed to possible alteration of the intracellular entry pathway in addition to increased extracellular stability, less cellular toxicity, and assistance in nuclear accumulation. These results imply potential use of glycosaminoglycans such as chondroitin sulfate to improve the transfection efficiency of primary amphipathic peptides for possible in vivo applications.
Collapse
Affiliation(s)
- Daniel Nisakar
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India
| | - Manika Vij
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Tanuja Pandey
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India
| | - Poornemaa Natarajan
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India
| | - Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India
| | - Sarita Mishra
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| |
Collapse
|