1
|
Rosseto M, Rigueto CVT, Gomes KS, Krein DDC, Loss RA, Dettmer A, Richards NSPDS. Whey filtration: a review of products, application, and pretreatment with transglutaminase enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3185-3196. [PMID: 38151774 DOI: 10.1002/jsfa.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
In the cheese industry, whey, which is rich in lactose and proteins, is underutilized, causing adverse environmental impacts. The fractionation of its components, typically carried out through filtration membranes, faces operational challenges such as membrane fouling, significant protein loss during the process, and extended operating times. These challenges require attention and specific methods for optimization and to increase efficiency. A promising strategy to enhance industry efficiency and sustainability is the use of enzymatic pre-treatment with the enzyme transglutaminase (TGase). This enzyme plays a crucial role in protein modification, catalyzing covalent cross-links between lysine and glutamine residues, increasing the molecular weight of proteins, facilitating their retention on membranes, and contributing to the improvement of the quality of the final products. The aim of this study is to review the application of the enzyme TGase as a pretreatment in whey protein filtration. The scope involves assessing the enzyme's impact on whey protein properties and its relationship with process performance. It also aims to identify both the optimization of operational parameters and the enhancement of product characteristics. This study demonstrates that the application of TGase leads to improved performance in protein concentration, lactose permeation, and permeate flux rate during the filtration process. It also has the capacity to enhance protein solubility, viscosity, thermal stability, and protein gelation in whey. In this context, it is relevant for enhancing the characteristics of whey, thereby contributing to the production of higher quality final products in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marieli Rosseto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cesar Vinicius Toniciolli Rigueto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Karolynne Sousa Gomes
- Graduate Program in Food Engineering and Science, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Raquel Aparecida Loss
- Food Engineering Department, Faculty of Architecture and Engineering (FAE), Mato Grosso State University (UNEMAT), Barra do Bugres, Brazil
| | - Aline Dettmer
- Postgraduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITec), University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | |
Collapse
|
2
|
Zhou S, Fang X, Lv J, Yang Y, Zeng Y, Liu Y, Wei W, Huang G, Zhang B, Wu C. Site-Specific Modification of Single Domain Antibodies by Enzyme-Immobilized Magnetic Beads. Bioconjug Chem 2023; 34:1914-1922. [PMID: 37804224 DOI: 10.1021/acs.bioconjchem.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Nanobodies as imaging agents and drug conjugates have shown great potential for cancer diagnostics and therapeutics. However, site-specific modification of a nanobody with microbial transglutaminase (mTGase) encounters problems in protein separation and purification. Here, we describe a facile yet reliable strategy of immobilizing mTGase onto magnetic beads for site-specific nanobody modification. The mTGase immobilized on magnetic beads (MB-mTGase) exhibits catalytic activity nearly equivalent to that of the free mTGase, with good reusability and universality. Magnetic separation simplifies the protein purification step and reduces the loss of nanobody bioconjugates more effectively than size exclusion chromatography. Using MB-mTGase, we demonstrate site-specific conjugation of nanobodies with fluorescent dyes and polyethylene glycol molecules, enabling targeted immunofluorescence imaging and improved circulation dynamics and tumor accumulation in vivo. The combined advantages of MB-mTGase method, including high conjugation efficiency, quick purification, less protein loss, and recycling use, are promising for site-specific nanobody functionalization and biomedical applications.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiaofeng Fang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yicheng Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yiqi Zeng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Changfeng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
3
|
Grigoletto A, Marotti V, Tedeschini T, Campara B, Marigo I, Ingangi V, Pasut G. Improving the Therapeutic Potential of G-CSF through Compact Circular PEGylation Based on Orthogonal Conjugations. Biomacromolecules 2023; 24:4229-4239. [PMID: 37638739 PMCID: PMC10498445 DOI: 10.1021/acs.biomac.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Indexed: 08/29/2023]
Abstract
In this study, a circular conjugate of granulocyte colony-stimulating factor (G-CSF) was prepared by conjugating the two end-chains of poly(ethylene glycol) (PEG) to two different sites of the protein. For the orthogonal conjugation, a heterobifunctional PEG chain was designed and synthesized, bearing the dipeptide ZGln-Gly (ZQG) at one end-chain, for transglutaminase (TGase) enzymatic selective conjugation at Lys41 of G-CSF, and an aldehyde group at the opposite end-chain, for N-terminal selective reductive alkylation of the protein. The cPEG-Nter/K41-G-CSF circular conjugate was characterized by physicochemical methods and compared with native G-CSF and the corresponding linear monoconjugates of G-CSF, PEG-Nter-G-CSF, and PEG-K41-G-CSF. The results demonstrated that the circular conjugate had improved physicochemical and thermal stability, prolonged pharmacokinetic interaction, and retained the biological activity of G-CSF. The PEGylation strategy employed in this study has potential applications in the design of novel protein-based therapeutics.
Collapse
Affiliation(s)
- Antonella Grigoletto
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Valentina Marotti
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Tommaso Tedeschini
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Benedetta Campara
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Ilaria Marigo
- Department
of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Istituto
Oncologico Veneto IOV − IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Vincenzo Ingangi
- Istituto
Oncologico Veneto IOV − IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Gianfranco Pasut
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
4
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
5
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
6
|
Braatz D, Cherri M, Tully M, Dimde M, Ma G, Mohammadifar E, Reisbeck F, Ahmadi V, Schirner M, Haag R. Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angew Chem Int Ed Engl 2022; 61:e202203942. [PMID: 35575255 PMCID: PMC10091760 DOI: 10.1002/anie.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications.
Collapse
Affiliation(s)
- Daniel Braatz
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mariam Cherri
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Tully
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mathias Dimde
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Guoxin Ma
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Ehsan Mohammadifar
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Felix Reisbeck
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Vahid Ahmadi
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Schirner
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
7
|
Hu J, Shi J, Yuan Y, Li S, Zhang B, Dong H, Zhong Q, Xie Q, Bai X, Li Y. Self-fused concatenation of interferon with enhanced bioactivity, pharmacokinetics and antitumor efficacy. RSC Adv 2022; 12:28279-28282. [PMID: 36320276 PMCID: PMC9531251 DOI: 10.1039/d2ra04978c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
We report an easy but universal protein modification approach, self-fused concatenation (SEC), to biosynthesize a set of interferon (IFN) concatemers with improved in vitro bioactivity, in vivo pharmacokinetics and therapeutic efficacy over the monomeric IFN, and the results can be positively enhanced by the concatenated number of self-fused proteins.
Collapse
Affiliation(s)
- Jin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Jianquan Shi
- Department of Intensive Care Unit, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing 101149China
| | - Yeshuang Yuan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing 100730China
| | - Shengjie Li
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Bo Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Haitao Dong
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Qing Zhong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Qiu Xie
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| | - Yingxing Li
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730China
| |
Collapse
|
8
|
Battista MR, Grigoletto A, Tedeschini T, Cellucci A, Colaceci F, Laufer R, Pasut G, Di Marco A. Efficacy of PEGylated ciliary neurotrophic factor superagonist variant in diet-induced obesity mice. PLoS One 2022; 17:e0265749. [PMID: 35316287 PMCID: PMC8939829 DOI: 10.1371/journal.pone.0265749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a neurotrophic cytokine able to induce appetite reduction, weight loss and antidiabetic effects. However, its susceptibility to neutralizing anti-CNTF antibodies in patients hampered its use for treatment of human obesity and diabetes. In addition, CNTF has a very short plasma half-life, which limits its use as a therapeutic agent. Solutions, directed to prolong its in vivo effects, vary from the implantation of encapsulated secreting cells to identification of more active variants or chemical modification of the protein itself. PEGylation is a widely used modification for shielding proteins from circulating antibodies and for increasing their plasma half-life. Here, we have selected DH-CNTF, a CNTF variant which has a 40-fold higher affinity for the CNTF receptor α accompanied by an increased activity in cellular assays. The PEGylated DH-CNTF retained the biological activity of native protein in vitro and showed a significant improvement of pharmacokinetic parameters. In an acute model of glucose tolerance, the PEG-DH-CNTF was able to reduce the glycemia in diet-induced obese animals, with a performance equaled by a 10-fold higher dose of DH-CNTF. In addition, the PEGylated DH-CNTF analog demonstrated a more potent weight loss effect than the unmodified protein, opening to the use of CNTF as weight reducing agent with treatment regimens that can better meet patient compliance thanks to reduced dosing schedules.
Collapse
Affiliation(s)
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tommaso Tedeschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | | | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- * E-mail: (ADM); (GP)
| | | |
Collapse
|
9
|
Hu J, Shi J, Yuan Y, Zhang B, Li S, Dong H. Enhancement of bioactivity, thermal stability and tumor retention by self-fused concatenation of green fluorescent protein. Biochem Biophys Rep 2021; 28:101112. [PMID: 34485712 PMCID: PMC8397794 DOI: 10.1016/j.bbrep.2021.101112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
The widespread application of protein and peptide therapeutics is hampered by their poor stability, strong immunogenicity and short half-life. However, the existing protein modification technologies require the introduction of exogenous macromolecules, resulting in inevitable immunogenicity and decreased bioactivity. Herein, we reported an easy but universal protein modification approach, self-fused concatenation (SEC), to enhance the in vitro thermal stability and in vivo tumor retention of proteins. In this proof of concept study, we successfully obtained a set of green fluorescence protein (GFP) concatemers, monomer (GFP 1), dimer (GFP 2) and trimer (GFP 3) of GFP, and systematically studied the effects of SEC on the biological activity and stability of GFP. Notably, GFP concatemers displayed remarkable improvement in in vitro bioactivity and thermal stability over the monomeric GFP. In a murine tumor model, GFP 2 and GFP 3 exhibited significantly prolonged duration, with increases of 220- and 381-fold relative to GFP 1 in tumor retention 4 h after administration. Furthermore, the biological activity, thermal stability and tumor retention can be enhanced by the concatenated number of self-fused proteins. These findings demonstrate that SEC may be a promising alternative to design advanced protein and peptide therapeutics with enhanced pharmaceutic profiles.
Collapse
Affiliation(s)
- Jin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jianquan Shi
- Department of Intensive Care Unit, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yeshuang Yuan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shengjie Li
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Haitao Dong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
10
|
Shi J, Hu J, Yuan Y, Zhang B, Guo W, Wu Y, Jiang L. Genetic Fusion of Transacting Activator of Transcription Peptide to Cyclized Green Fluorescence Protein Improves Stability, Intracellular Delivery, and Tumor Retention. ACS OMEGA 2021; 6:7931-7940. [PMID: 33778304 PMCID: PMC7992142 DOI: 10.1021/acsomega.1c00532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Therapeutic proteins such as enzymes, hormones, and cytokines suffer from poor stability, inefficient cellular penetration, and rapid clearance from circulation. Conjugation with polymers (such as poly(ethylene glycol)) and fusion with long-acting proteins (such as albumin and Fc fragments) have been utilized to partially address the delivery issues, but these strategies require the introduction of new macromolecular substances, resulting in potential immunogenicity and toxicity. Herein, we report an easy strategy to increase the intracellular delivery efficiency and stability of proteins by combining of sortase-mediated protein cyclization and cell-penetrating peptide (CPP)-mediated intracellular delivery. We, for the first time, genetically constructed a green fluorescence protein (GFP) fused with a CPP, a transacting activator of transcription (TAT) peptide, at its C-terminus for intracellular internalization, and two sortase recognition sequences, pentaglycine and LPETG, at its N- and C-termini for cyclization. Notably, the cyclized GFP-TAT (cGFP-TAT) not only highly retained the photophysical properties of the protein but also significantly improved the in vitro stability compared with the native linear GFP (lGFP) and linear TAT peptide-fused GFP (lGFP-TAT).Moreover, cGFP-TAT showed better cellular internalization ability compared with lGFP. In C26 tumor-inoculated mice, cGFP-TAT exhibited enhanced in vivo tumor retention, with increases of 7.79- and 6.52-fold relative to lGFP and lGFP-TAT in tumor retention 3 h after intratumor administration. This proof-of-concept study has provided an easy strategy to increase the in vitro stability, intracellular delivery efficiency, and in vivo tumor retention of GFP, which would be applicable to numerous therapeutic proteins and peptides for clinical practice.
Collapse
Affiliation(s)
- Jianquan Shi
- Department
of Intensive Care Unit, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor
Research Institute, Beijing 101149, China
| | - Jin Hu
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Yeshuang Yuan
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
- Department
of Microbiology and Immunology, North Sichuan
Medical College, Nanchong 637100, China
| | - Bo Zhang
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Wenting Guo
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Yuanhao Wu
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Lingjuan Jiang
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| |
Collapse
|
11
|
Sadiki A, Vaidya SR, Abdollahi M, Bhardwaj G, Dolan ME, Turna H, Arora V, Sanjeev A, Robinson TD, Koid A, Amin A, Zhou ZS. Site-specific conjugation of native antibody. Antib Ther 2020; 3:271-284. [PMID: 33644685 PMCID: PMC7906296 DOI: 10.1093/abt/tbaa027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditionally, non-specific chemical conjugations, such as acylation of amines on lysine or alkylation of thiols on cysteines, are widely used; however, they have several shortcomings. First, the lack of site-specificity results in heterogeneous products and irreproducible processes. Second, potential modifications near the complementarity-determining region may reduce binding affinity and specificity. Conversely, site-specific methods produce well-defined and more homogenous antibody conjugates, ensuring developability and clinical applications. Moreover, several recent side-by-side comparisons of site-specific and stochastic methods have demonstrated that site-specific approaches are more likely to achieve their desired properties and functions, such as increased plasma stability, less variability in dose-dependent studies (particularly at low concentrations), enhanced binding efficiency, as well as increased tumor uptake. Herein, we review several standard and practical site-specific bioconjugation methods for native antibodies, i.e., those without recombinant engineering. First, chemo-enzymatic techniques, namely transglutaminase (TGase)-mediated transamidation of a conserved glutamine residue and glycan remodeling of a conserved asparagine N-glycan (GlyCLICK), both in the Fc region. Second, chemical approaches such as selective reduction of disulfides (ThioBridge) and N-terminal amine modifications. Furthermore, we list site-specific antibody–drug conjugates in clinical trials along with the future perspectives of these site-specific methods.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Shefali R Vaidya
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Mina Abdollahi
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Gunjan Bhardwaj
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Michael E Dolan
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA.,Downstream Development, Biologics Process Development, Millennium Pharmaceuticals, Inc., (a wholly-owned subsidiary of Takeda Pharmaceuticals Company Limited), Cambridge, Massachusetts 02139, USA
| | - Harpreet Turna
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Varnika Arora
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Athul Sanjeev
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Timothy D Robinson
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Andrea Koid
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Aashka Amin
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| |
Collapse
|
12
|
Grigoletto A, Tedeschini T, Canato E, Pasut G. The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1689. [PMID: 33314717 DOI: 10.1002/wnan.1689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Polymer conjugation can be considered one of the leading approaches within the vast field of nanotechnology-based drug delivery systems. In fact, such technology can be exploited for delivering an active molecule, such as a small drug, a protein, or genetic material, or it can be applied to other drug delivery systems as a strategy to improve their in vivo behavior or pharmacokinetic activities such as prolonging the half-life of a drug, conferring stealth properties, providing external stimuli responsiveness, and so on. If on the one hand, polymer conjugation with biotech drug is considered the linchpin of the protein delivery field boasting several products in clinical use, on the other, despite dedicated research, conjugation with low molecular weight drugs has not yet achieved the milestone of the first clinical approval. Some of the primary reasons for this debacle are the difficulties connected to achieving selective targeting to diseased tissue, organs, or cells, which is the main goal not only of polymer conjugation but of all delivery systems of small drugs. In light of the need to achieve better drug targeting, researchers are striving to identify more sophisticated, biocompatible delivery approaches and to open new horizons for drug targeting methodologies leading to successful clinical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tommaso Tedeschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Maso K, Grigoletto A, Raccagni L, Bellini M, Marigo I, Ingangi V, Suzuki A, Hirai M, Kamiya M, Yoshioka H, Pasut G. Poly(L-glutamic acid)-co-poly(ethylene glycol) block copolymers for protein conjugation. J Control Release 2020; 324:228-237. [PMID: 32413454 DOI: 10.1016/j.jconrel.2020.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/04/2023]
Abstract
Poly(L-glutamic acid)-co-poly(ethylene glycol) block copolymers (PLE-PEG) are here investigated as polymers for conjugation to therapeutic proteins such as granulocyte colony stimulating factor (G-CSF) and human growth hormone (hGH). PLE-PEG block copolymers are able to stabilize and protect proteins from degradation and to prolong their residence time in the blood stream, features that are made possible thanks to PEG's intrinsic properties and the simultaneous presence of the biodegradable anionic PLE moiety. When PLE-PEG copolymers are selectively tethered to the N-terminus of G-CSF and hGH, they yield homogeneous monoconjugates that preserve the protein's secondary structure. During the current study the pharmacokinetics of PLE10-PEG20k-G-CSF and PLE20-PEG20k-G-CSF derivatives and their ability to induce granulopoiesis were, respectively, assessed in Sprague-Dawley rats and in C57BL6 mice. Our results show that the bioavailability and bioactivity of the derivatives are comparable to or better than those of PEG20k-Nter-G-CSF (commercially known as Pegfilgrastim). The therapeutic effects of PLE10-PEG20k-hGH and PLE20-PEG20k-hGH derivatives tested in hypophysectomized rats demonstrate that the presence of a negatively charged PLE block enhances the biological properties of the conjugates additionally with respect to PEG20k-Nter-hGH.
Collapse
Affiliation(s)
- Katia Maso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via F. Marzolo 5, 35131 Padua, Italy
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via F. Marzolo 5, 35131 Padua, Italy
| | - Lucia Raccagni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via F. Marzolo 5, 35131 Padua, Italy
| | - Marino Bellini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via F. Marzolo 5, 35131 Padua, Italy
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Akira Suzuki
- NOF CORPORATION, DDS Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Midori Hirai
- NOF CORPORATION, DDS Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Masaki Kamiya
- NOF CORPORATION, DDS Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Hiroki Yoshioka
- NOF CORPORATION, DDS Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via F. Marzolo 5, 35131 Padua, Italy.
| |
Collapse
|
14
|
Doti N, Caporale A, Monti A, Sandomenico A, Selis F, Ruvo M. A recent update on the use of microbial transglutaminase for the generation of biotherapeutics. World J Microbiol Biotechnol 2020; 36:53. [PMID: 32172335 DOI: 10.1007/s11274-020-02829-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/07/2020] [Indexed: 01/12/2023]
Abstract
The recent scientific progresses on the use of enzyme-mediated reactions in organic, non-aqueous and aqueous media have significantly supported the growing demand of new biotechnological and/or pharmacological products. Today, a plethora of microbial enzymes, used as biocatalysts, are available. Among these, microbial transglutaminases (MTGs) are broadly used for their ability to catalyse the formation of an isopeptide bond between the γ-amide group of glutamines and the ε-amino group of lysine. Due to their promiscuity towards primary amine-containing substrates and the more stringent specificity for glutamine-containing peptide sequences, several combined approaches can be tailored for different settings, making MTGs very attractive catalysts for generating protein-protein and protein small molecule's conjugates. The present review offers a recent update on the modifications attainable by MTG-catalysed bioreactions as reported between 2014 and 2019. In particular, we present a detailed and comparative overview on the MTG-based methods for proteins and antibodies engineering, with a particular outlook on the synthesis of homogeneous antibody-drug conjugates.
Collapse
Affiliation(s)
- N Doti
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.
| | - A Caporale
- Institute of Crystallography, CNR (IC-CNR), c/o Area Science Park s.s. 14 Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Alessandra Monti
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABIF), University L. Vanvitelli, Via Vivaldi, 43, 80100, Caserta, Italy
| | - A Sandomenico
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy
| | - Fabio Selis
- BioVIIIx R&D, Via B. Brin, 59C, 80142, Naples, Italy
| | - M Ruvo
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.
| |
Collapse
|
15
|
Duarte LS, Barsé LQ, Dalberto PF, da Silva WTS, Rodrigues RC, Machado P, Basso LA, Bizarro CV, Ayub MAZ. Cloning and expression of the Bacillus amyloliquefaciens transglutaminase gene in E. coli using a bicistronic vector construction. Enzyme Microb Technol 2020; 134:109468. [DOI: 10.1016/j.enzmictec.2019.109468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
|
16
|
Review transglutaminases: part II-industrial applications in food, biotechnology, textiles and leather products. World J Microbiol Biotechnol 2019; 36:11. [PMID: 31879822 DOI: 10.1007/s11274-019-2792-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
Because of their protein cross-linking properties, transglutaminases are widely used in several industrial processes, including the food and pharmaceutical industries. Transglutaminases obtained from animal tissues and organs, the first sources of this enzyme, are being replaced by microbial sources, which are cheaper and easier to produce and purify. Since the discovery of microbial transglutaminase (mTGase), the enzyme has been produced for industrial applications by traditional fermentation process using the bacterium Streptomyces mobaraensis. Several studies have been carried out in this field to increase the enzyme industrial productivity. Researches on gene expression encoding transglutaminase biosynthesis were performed in Streptomyces lividans, Escherichia coli, Corynebacterium glutamicum, Yarrowia lipolytica, and Pichia pastoris. In the first part of this review, we presented an overview of the literature on the origins, types, mediated reactions, and general characterizations of these important enzymes, as well as the studies on recombinant microbial transglutaminases. In this second part, we focus on the application versatility of mTGase in three broad areas: food, pharmacological, and biotechnological industries. The use of mTGase is presented for several food groups, showing possibilities of applications and challenges to further improve the quality of the end-products. Some applications in the textile and leather industries are also reviewed, as well as special applications in the PEGylation reaction, in the production of antibody drug conjugates, and in regenerative medicine.
Collapse
|
17
|
Deweid L, Avrutina O, Kolmar H. Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem 2019; 400:257-274. [PMID: 30291779 DOI: 10.1515/hsz-2018-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Research on bacterial transglutaminase dates back to 1989, when the enzyme has been isolated from Streptomyces mobaraensis. Initially discovered during an extensive screening campaign to reduce costs in food manufacturing, it quickly appeared as a robust and versatile tool for biotechnological and pharmaceutical applications due to its excellent activity and simple handling. While pioneering attempts to make use of its extraordinary cross-linking ability resulted in heterogeneous polymers, currently it is applied to site-specifically ligate diverse biomolecules yielding precisely modified hybrid constructs comprising two or more components. This review covers the extensive and rapidly growing field of microbial transglutaminase-mediated bioconjugation with the focus on pharmaceutical research. In addition, engineering of the enzyme by directed evolution and rational design is highlighted. Moreover, cumbersome drawbacks of this technique mainly caused by the enzyme's substrate indiscrimination are discussed as well as the ways to bypass these limitations.
Collapse
Affiliation(s)
- Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| |
Collapse
|
18
|
Caporale A, Monti A, Selis F, Sandomenico A, Tonon G, Ruvo M, Doti N. A comparative analysis of catalytic activity and stability of microbial transglutaminase in controlled denaturing conditions. J Biotechnol 2019; 302:48-57. [PMID: 31229602 DOI: 10.1016/j.jbiotec.2019.06.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Microbial transglutaminases (MTGs) catalyzes the formation of Gln-Lys isopeptide bonds and are widely used for the cross-linking of proteins and peptides in food and in biotechnological applications for bioconjugation reactions. In view of its practical utility, a comparative study of the catalytic activity and stability of the enzyme in a wide range of denaturing conditions has been performed through Circular Dichroism (CD), fluorescence and activity assays performed with model substrates. In agreement with previous results, we show that MTG has a significant structural and functional tolerance to pH changes, whereas the enzyme stability and activity decrease in presence of increasing amounts of denaturing agents, such as urea and guanidinium chloride (GdnHCl). Noteworthy, the activity of MTG in denaturing conditions differs markedly from that in pseudo-physiological settings, shifting unexpectedly toward higher substrate specificity. Also, the use of controlled amounts of denaturing agents (1.0-1.5 M urea) largely improves yields and purity of the final products of 10-15% and 25-30%, respectively. These findings widen the range of applicability of the MTG-mediated biocatalysis for industrial and biotechnological purposes.
Collapse
Affiliation(s)
| | - Alessandra Monti
- IBB-CNR, Via Mezzocannone 16, 80134, Napoli, Italy; Università degli studi della Campania "Luigi Vanvitelli", Via Vivaldi n. 43 - 81100 Caserta, Caserta, Italy
| | - Fabio Selis
- BIOVIIIx, via Brin, 59, 80142, Napoli, Italy
| | | | | | - Menotti Ruvo
- IBB-CNR, Via Mezzocannone 16, 80134, Napoli, Italy.
| | | |
Collapse
|
19
|
Omidi M, Hashemi M, Tayebi L. Microfluidic synthesis of PLGA/carbon quantum dot microspheres for vascular endothelial growth factor delivery. RSC Adv 2019; 9:33246-33256. [PMID: 35529135 PMCID: PMC9073357 DOI: 10.1039/c9ra06279c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, vascular endothelial growth factor (VEGF) loaded poly(d,l-lactide-co-glycolide) (PLGA) – carbon quantum dot microspheres were produced using microfluidic platforms.
Collapse
Affiliation(s)
- Meisam Omidi
- Marquette University School of Dentistry
- Milwaukee
- USA
| | - Mohadeseh Hashemi
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin
- USA
- Division of Pharmaceutics
| | - Lobat Tayebi
- Marquette University School of Dentistry
- Milwaukee
- USA
| |
Collapse
|
20
|
Dickgiesser S, Deweid L, Kellner R, Kolmar H, Rasche N. Site-Specific Antibody-Drug Conjugation Using Microbial Transglutaminase. Methods Mol Biol 2019; 2012:135-149. [PMID: 31161507 DOI: 10.1007/978-1-4939-9546-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antibody-drug conjugates (ADCs) are a relatively young class of cancer therapeutics that combine the superior selectivity of monoclonal antibodies (mAbs) with the high potency of cytotoxic agents. In the first generation of ADCs, the toxic payload is attached to the mAb via chemical conjugation to endogenous lysine or cysteine residues providing only limited control over site specificity and drug-to-antibody ratio (DAR). The resulting product is a heterogeneous population of different ADC species, each with individual characteristics concerning pharmacokinetics, toxicology, and efficacy. Such diverse ADC mixtures are not only difficult to develop but are potentially also accompanied by a suboptimal therapeutic window. To overcome these limitations, alternative conjugation technologies have been developed that allow the production of tailor-made homogeneous ADCs. Due to its high specificity and robust applicability, microbial transglutaminase (mTG), a protein-glutamine γ-glutamyltransferase isolated from Streptomyces mobaraensis, emerged as a versatile tool for ADC manufacturing. Herein, we report a protocol for the site-specific, mTG-mediated modification of antibodies that allows the production of homogeneous and defined ADCs. Moreover, analytical methods for ADC characterization are provided.
Collapse
Affiliation(s)
| | - Lukas Deweid
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Roland Kellner
- ADCs & Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nicolas Rasche
- ADCs & Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
21
|
Chaubet G, Thoreau F, Wagner A. Recent, non-classical, approaches to antibody lysine modification. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:21-26. [PMID: 30553516 DOI: 10.1016/j.ddtec.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/09/2023]
Abstract
This review will discuss recent development in the bioconjugation of lysine residues on antibodies. As several chemoselective reagents have already been developed for modifying amine groups, recent strategies now tend to aim at being site-specific. Four general methods have been listed: kinetically controlled, template-directed or enzymatic strategies as well as the use of chemically programmed antibodies.
Collapse
Affiliation(s)
| | | | - Alain Wagner
- University of Strasbourg, Faculty of Pharmacy, France
| |
Collapse
|
22
|
Maso K, Grigoletto A, Pasut G. Transglutaminase and Sialyltransferase Enzymatic Approaches for Polymer Conjugation to Proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:123-142. [PMID: 29680235 DOI: 10.1016/bs.apcsb.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Proteins hold a central role in medicine and biology, also confirmed by the several therapeutic applications based on biologic drugs. Such therapies are of great relevance thanks to high potency and safety of proteins. Nevertheless, many proteins as therapeutics might present issues like fast kidney clearance, rapid enzymatic degradation, or immunogenicity. Such defects implicate frequent administrations or administrations at high doses of the therapeutics, thus yielding or exacerbating potential side effects. A successful technology for improving the clinical profiles of proteins is the conjugation of polymers to the protein surface. The design of a protein-polymer conjugate presents critical aspects that determine the efficacy and safety of the final product. The control over stoichiometry and conjugation site is a strict criterion on which researchers have been intensively focused during the years, in order to obtain homogeneous and batch-to-batch reproducible products. An innovative site-specific conjugation strategy relies on the use of enzymes as tools to mediate polymer conjugation. Enzymatic approaches are attractive because they allow site-selective polymer conjugation at specific protein amino acids. In these reactions, the polymer is a substrate analog that replaces the native substrate. Furthermore, enzymes can count other advantages such as high yields of conversion and physiological conditions of reaction. This chapter provides a meaningful description of protein-polymer conjugation through transglutaminase-mediated and sialyltransferase-mediated enzymatic strategies, reporting the mechanism of action and some relevant examples.
Collapse
Affiliation(s)
| | | | - Gianfranco Pasut
- University of Padua, Padua, Italy; Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|