1
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Song YH, De R, Lee KT. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview. Adv Colloid Interface Sci 2023; 320:103008. [PMID: 37776736 DOI: 10.1016/j.cis.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Blood-brain barrier (BBB) serves as an essential interface between central nervous system (CNS) and its periphery, allowing selective permeation of ions, gaseous molecules, and other nutrients to maintain metabolic functions of brain. Concurrently, it restricts passage of unsolicited materials from bloodstream to CNS which could otherwise lead to neurotoxicity. Nevertheless, in the treatment of neurodegenerative diseases such as Parkinson's, Alzheimer's, diffuse intrinsic pontine glioma, and other brain cancers, drugs must reach CNS. Among various materials developed for this purpose, a few judiciously selected polymeric nanocarriers are reported to be highly prospective to facilitate BBB permeation. However, the challenge of transporting drug-loaded nanomaterials across this barrier remains formidable. Herein a concise analysis of recently employed strategies for designing polymeric nanocarriers to deliver therapeutics across BBB is presented. Impacts of 3Ss, namely, size, shape, and surface charge of polymeric nanocarriers on BBB permeation along with different ligands used for nanoparticle surface modification to achieve targeted delivery have been scrutinized. Finally, we elucidated future research directions in the context of designing smart polymeric nanocarriers for BBB permeation. This work aims to guide researchers engaged in polymeric nanocarrier design, helping them navigate where to begin, what challenges to address, and how to proceed effectively.
Collapse
Affiliation(s)
- Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea; Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| |
Collapse
|
3
|
Shi L, Lin Z, Hou J, Liu W, Xu J, Guo Y. Purification and characterization of a chicory polysaccharide and its application in stabilizing genistein for cancer therapy. Int J Biol Macromol 2023; 242:124635. [PMID: 37121414 DOI: 10.1016/j.ijbiomac.2023.124635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Genistein is an isoflavone with chemopreventive and therapeutic effects on various types of cancers. Apparently, in contrast to the advantages of multi-target therapy, the poor water solubility of this molecule is a major obstacle to its clinical application. In this work, zein/chicory polysaccharide nanoparticles (G-zein-P NPs) were prepared by pH-induced antisolvent precipitation method for the encapsulation of genistein. Firstly, an acidic polysaccharide (CIP70-2) with a molecular weight of 66.7 kDa was identified from the roots of chicory (Cichorium intybus). This natural macromolecule was identified as a plant pectin, for which the structure included RG-I (rhamnogalacturonan I) and HG (homogalacturonan) regions. Using this polysaccharide, G-zein-P NPs were prepared, in which the water solubility of genistein was improved by encapsulation. The encapsulation efficiency and loading efficiency of genistein by composite nanoparticles reached 99.0 % and 6.96 %, respectively. In vitro tumor inhibition experiments showed that the inhibitory effect of G-zein-P NPs on HepG2 cells was twice that of unencapsulated genistein. Moreover, the significant inhibition of tumor development and metastasis by G-zein-P NPs was observed in zebrafish xenograft models. The results suggested that zein/chicory polysaccharide nanoparticles may be a promising delivery carrier for genistein application in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lijuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
4
|
Komeil IA, Abdallah OY, El-Refaie WM. Surface modified Genistein phytosome for Breast Cancer Treatment: In-vitro Appraisal, Pharmacokinetics, and In-vivo Antitumor Efficacy. Eur J Pharm Sci 2022; 179:106297. [PMID: 36156294 DOI: 10.1016/j.ejps.2022.106297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
Based on phytosomes advantages over liposomes, hyaluronic acid (HA) with/out pegylated phospholipid was used to develop surface-modified genistein (Gen) phytosome as Gen pegylated hyaluophytosomes (G-PHA) and Gen hyaluophytosomes (G-HA) as novel delivery systems for breast cancer treatment. In this study, in-vitro characterization of G-HA and G-PHA shows PS 144.2 ±1.266 nm and 220.3 ±2.51 nm, ZP -30.9 ±0.75 and -32.06 ±0.305 respectively. Morphological elucidation shows HA covers the surface of G-HA and the presence of a transparent layer of PEG surrounding G-PHA. In-vitro release shows a significant slow Gen release from G-HA, and G-PHA compared to Gen solution and Gen phytosomes. In-vivo bioavailability data shows improvement in bioavailability for G-HA and G-PHA compared to Gen suspension (AUC0- T: :3.563 ±0.067, 2.092 ±0.058, 0.374 ±0.085 µg/ml*h respectively). Therapeutic evaluation of the prepared targeted formulations was carried out by subcutaneous injection in an EAC-induced breast cancer model in mice. G-HA and G-PHA show a promising chemotherapeutic effect in terms of lowering the tumor size and tumor biomarkers (CEA: -34.6, -44.7 & CA15.3: -77.8, -81.6 respectively). This reduction in their values compared to Gen phytosomes, Gen suspension, and the control group is attributed to high Gen accumulation at the target organ owing to targeting properties of HA that are used in phytosomal surface modification in G-HA. Additionally, the presence of MPEG2000-DSPE in G-PHA tends to improve interstitium lymphatic drainage following SC administration, resulting in maximizing the therapeutic benefits of breast cancer despite the difference in pharmacokinetics behavior compared to G-HA. These formulations can be further studied for metastatic breast cancer.
Collapse
Affiliation(s)
- Ibrahim A Komeil
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
Zhou H, Tian J, Sun H, Fu J, Lin N, Yuan D, Zhou L, Xia M, Sun L. Systematic Identification of Genomic Markers for Guiding Iron Oxide Nanoparticles in Cervical Cancer Based on Translational Bioinformatics. Int J Nanomedicine 2022; 17:2823-2841. [PMID: 35791307 PMCID: PMC9250777 DOI: 10.2147/ijn.s361483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Magnetic iron oxide nanoparticle (MNP) drug delivery system is a novel promising therapeutic option for cancer treatment. Material issues such as fabrication and functionalized modification have been investigated; however, pharmacologic mechanisms of bare MNPs inside cancer cells remain obscure. This study aimed to explore a systems pharmacology approach to understand the reaction of the whole cell to MNPs and suggest drug selection in MNP delivery systems to exert synergetic or additive anti-cancer effects. Methods HeLa and SiHa cell lines were used to estimate the properties of bare MNPs in cervical cancer through 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and enzyme activity assays and cellular fluorescence imaging. A systems pharmacology approach was utilized by combining bioinformatics data mining with clinical data analysis and without a predefined hypothesis. Key genes of the MNP onco-pharmacologic mechanism in cervical cancer were identified and further validated through transcriptome analysis with quantitative reverse transcription PCR (qRT-PCR). Results Low cytotoxic activity and cell internalization of MNP in HeLa and SiHa cells were observed. Lysosomal function was found to be impaired after MNP treatment. Protein tyrosine kinase 2 beta (PTK2B), liprin-alpha-4 (PPFIA4), mothers against decapentaplegic homolog 7 (SMAD7), and interleukin (IL) 1B were identified as key genes relevant for MNP pharmacology, clinical features, somatic mutation, and immune infiltration. The four key genes also exhibited significant correlations with the lysosome gene set. The qRT-PCR results showed significant alterations in the expression of the four key genes after MNP treatment in HeLa and SiHa cells. Conclusion Our research suggests that treatment of bare MNPs in HeLa and SiHa cells induced significant expression changes in PTK2B, PPFIA4, SMAD7, and IL1B, which play crucial roles in cervical cancer development and progression. Interactions of the key genes with specific anti-cancer drugs must be considered in the rational design of MNP drug delivery systems.
Collapse
Affiliation(s)
- Haohan Zhou
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China.,Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, People's Republic of China
| | - Jiayi Tian
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Hongyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Nan Lin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Danni Yuan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Li Zhou
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Meihui Xia
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
6
|
Genistein, a tool for geroscience. Mech Ageing Dev 2022; 204:111665. [DOI: 10.1016/j.mad.2022.111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
|
7
|
De R, Jo KW, Kim KT. Influence of Molecular Structures on Fluorescence of Flavonoids and Their Detection in Mammalian Cells. Biomedicines 2022; 10:biomedicines10061265. [PMID: 35740288 PMCID: PMC9220233 DOI: 10.3390/biomedicines10061265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Flavonoids are being increasingly applied for the treatment of various diseases due to their anti-cancer, anti-oxidant, anti-inflammatory, and anti-viral properties. However, it is often challenging to detect their presence in cells and tissues through bioimaging, as most of them are not fluorescent or are too weak to visualize. Here, fluorescence possibilities of nine naturally occurring analogous flavonoids have been investigated through UV/visible spectroscopy, molecular structure examination, fluorescent images in mammalian cells and their statistical analysis employing aluminum chloride and diphenylboric acid 2-aminoethyl ester as fluorescence enhancers. It is found that, in order to form a stable fluorescent complex with an enhancer, flavonoids should have a keto group at C4 position and at least one -OH group at C3 or C5 position. Additionally, the presence of a double bond at C2–C3 can stabilize extended quinonoid structure at the cinnamoyl moiety, which thereby enhances the complex stability. A possible restriction to the free rotation of ring B around C1′–C2 single bond can contribute to the further enhancement of fluorescence. Thus, these findings can act as a guide for distinguishing flavonoids capable of exhibiting fluorescence from thousands of their analogues. Finally, using this technique, flavonoids are detected in neuroblastoma cells and their time course assay is conducted via fluorescence imaging. Their cellular uptake efficiency is found to be high and differential in nature and their distribution throughout the cytoplasm is clearly detected.
Collapse
|
8
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
9
|
Özen İ, Wang X. Biomedicine: electrospun nanofibrous hormonal therapies through skin/tissue—a review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- İlhan Özen
- Textile Engineering Department, Erciyes University, Melikgazi, Kayseri, Turkey
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| |
Collapse
|
10
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
11
|
Somu P, Paul S. Surface conjugation of curcumin with self-assembled lysozyme nanoparticle enhanced its bioavailability and therapeutic efficacy in multiple cancer cells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116623] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Donini M, Gaglio SC, Laudanna C, Perduca M, Dusi S. Oxyresveratrol-Loaded PLGA Nanoparticles Inhibit Oxygen Free Radical Production by Human Monocytes: Role in Nanoparticle Biocompatibility. Molecules 2021; 26:molecules26144351. [PMID: 34299623 PMCID: PMC8305861 DOI: 10.3390/molecules26144351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Oxyresveratrol, a polyphenol extracted from the plant Artocarpus lakoocha Roxb, has been reported to be an antioxidant and an oxygen-free radical scavenger. We investigated whether oxyresveratrol affects the generation of superoxide anion (O2−) by human monocytes, which are powerful reactive oxygen species (ROS) producers. We found that oxyresveratrol inhibited the O2− production induced upon stimulation of monocytes with β-glucan, a well known fungal immune cell activator. We then investigated whether the inclusion of oxyresveratrol into nanoparticles could modulate its effects on O2− release. We synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on monocytes. We found that empty PLGA nanoparticles induced O2− production by resting monocytes and enhanced the formation of this radical in β-glucan-stimulated monocytes. Interestingly, the insertion of oxyresveratrol into PLGA nanoparticles significantly inhibited the O2− production elicited by unloaded nanoparticles in resting monocytes as well as the synergistic effect of nanoparticles and β-glucan. Our results indicate that oxyresveratrol is able to inhibit ROS production by activated monocytes, and its inclusion into PLGA nanoparticles mitigates the oxidative effects due to the interaction between these nanoparticles and resting monocytes. Moreover, oxyresveratrol can contrast the synergistic effects of nanoparticles with fungal agents that could be present in the patient tissues. Therefore, oxyresveratrol is a natural compound able to make PLGA nanoparticles more biocompatible.
Collapse
Affiliation(s)
- Marta Donini
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| | | | - Carlo Laudanna
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-045-802-7984
| | - Stefano Dusi
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| |
Collapse
|
13
|
Botet-Carreras A, Tamames-Tabar C, Salles F, Rojas S, Imbuluzqueta E, Lana H, Blanco-Prieto MJ, Horcajada P. Improving the genistein oral bioavailability via its formulation into the metal-organic framework MIL-100(Fe). J Mater Chem B 2021; 9:2233-2239. [PMID: 33596280 DOI: 10.1039/d0tb02804e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the interesting chemopreventive, antioxidant and antiangiogenic effects of the natural bioflavonoid genistein (GEN), its low aqueous solubility and bioavailability make it necessary to administer it using a suitable drug carrier system. Nanometric porous metal-organic frameworks (nanoMOFs) are appealing systems for drug delivery. Particularly, mesoporous MIL-100(Fe) possesses a variety of interesting features related to its composition and structure, which make it an excellent candidate to be used as a drug nanocarrier (highly porous, biocompatible, can be synthesized as homogenous and stable nanoparticles (NPs), etc.). In this study, GEN was entrapped via simple impregnation in MIL-100 NPs achieving remarkable drug loading (27.1 wt%). A combination of experimental and computing techniques was used to achieve a deep understanding of the encapsulation of GEN in MIL-100 nanoMOF. Subsequently, GEN delivery studies were carried out under simulated physiological conditions, showing on the whole a sustained GEN release for 3 days. Initial pharmacokinetic and biodistribution studies were also carried out upon the oral administration of the GEN@MIL-100 NPs in a mouse model, evidencing a higher bioavailability and showing that this oral nanoformulation appears to be very promising. To the best of our knowledge, the GEN-loaded MIL-100 will be the first antitumor oral formulation based on nanoMOFs studied in vivo, and paves the way to the efficient delivery of nontoxic antitumorals via a convenient oral route.
Collapse
Affiliation(s)
- Adrià Botet-Carreras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain. and Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Cristina Tamames-Tabar
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain. and Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Fabrice Salles
- ICGM, CNRS, Univ. Montpellier, ENSCM, Montpellier, France
| | - Sara Rojas
- IMDEA Energy, Avda. Ramón de la Sagra 3, 28035 Móstoles, Madrid, Spain.
| | - Edurne Imbuluzqueta
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Hugo Lana
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María José Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Patricia Horcajada
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France and IMDEA Energy, Avda. Ramón de la Sagra 3, 28035 Móstoles, Madrid, Spain.
| |
Collapse
|
14
|
Genistein loaded in self-assembled bovine serum albumin nanovehicles and their effects on mouse mammary adenocarcinoma cells. Colloids Surf B Biointerfaces 2021; 204:111777. [PMID: 33932891 DOI: 10.1016/j.colsurfb.2021.111777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022]
Abstract
Antitumor activity of plant-derived flavonoids has been researched during recent decades. Among them, genistein (Gen) stands out for showing cytotoxic activity against breast cancer cells. However, its low water solubility, limited bioavailability, and fast metabolism hinder its administration in chemopreventive therapies. To overcome these obstacles, bovine serum albumin nanovehicles (BSAnp) were obtained by a heat-induced self-assembly process at 70 °C and two aqueous medium pH (9.0 and 11.0) and assayed for the Gen loading. Thus, in this work, Gen loading in BSAnp was studied by spectroscopic techniques and compared with the one obtained for its stereoisomer, chrysin (Chrys). Results revealed that Gen binds to BSAnp via fluorescence quenching mechanism forming inclusion complexes. Compared to Chrys, Gen binding to BSAnp involved more molecules, whereas the association constant was similar for both flavonoids. In general, flavonoid loading in protein systems was strongly affected by the combined effects of BSA conformational state (native vs. aggregated), nanovehicle size, and flavonoid chemical structure. To evaluate the antitumor properties freeze-dried powders were obtained, and they were assayed in vitro after reconstitution by XTT technique and Annexin V-FITC flow cytometry against mouse mammary adenocarcinoma F3II cells. Gen-loaded BSAnp produced a significant decrease in cell viability compared with unloaded BSAnp systems, being the highest cytotoxic effects found for the lowest sized Gen-loaded BSAnp. The leading cytotoxicity mechanism for Gen-loaded systems was apoptosis. Summarizing, it can be concluded that BSAnp constitute versatile nanovehicles for potential flavonoid incorporation in pharmaceutical and nutraceutical matrices.
Collapse
|
15
|
Role of Curcumin in Regulating Long Noncoding RNA Expression in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:13-23. [PMID: 33861433 DOI: 10.1007/978-3-030-64872-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytochemicals are various compounds produced by plants. There is growing evidence on their potential health effects. Some of these compounds are considered as traditional medicines and used as painkillers, anti-inflammatory agents, and for other applications. One of these phytochemicals is curumin, a natural polyphenol derived from the turmeric plant (Curcuma longa L.). Curcumin is widely used as a food coloring, preservative and condiment. It has also been shown to have antioxidative and anti-inflammatory effects. Moreover, there is growing evidence that curcumin alters long noncoding RNAs (lncRNAs) in many kinds of cancer. These noncoding RNAs can cause epigenetic modulation in the expression of several genes. This study reviews reports of curcumin effects on lncRNAs in lung, prostate, colorectal, breast, pancreatic, renal, gastric, and ovarian cancers.
Collapse
|
16
|
Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport. Pharmaceutics 2021; 13:pharmaceutics13020267. [PMID: 33669306 PMCID: PMC7920073 DOI: 10.3390/pharmaceutics13020267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
Genistein (GEN) is a soy-derived isoflavone that exhibits several biological effects, such as neuroprotective activity and the prevention of several types of cancer and cardiovascular disease. However, due to its poor water solubility and the extensive first-pass metabolism, the oral bioavailability of GEN is limited. In this work, solid lipid nanoparticles (SLN) were developed to preferentially reach the intestinal lymphatic vessels, avoiding the first-pass metabolism of GEN. GEN-loaded SLN were obtained by a hot homogenization process, and the formulation parameters were chosen based on already formulated studies. The nanoparticles were characterized, and the preliminary in vitro chylomicron formation was evaluated. The cell uptake of selected nanocarriers was studied on the Caco-2 cell line and intestinal mucosa. The SLN, characterized by a spherical shape, showed an average diameter (about 280 nm) suitable for an intestinal lymphatic uptake, good stability during the testing time, and high drug loading capacity. Furthermore, the intestinal mucosa and Caco-2 cells were found to uptake SLN. The approximately two-fold increase in particle size suggested a possible interaction between SLN and the lipid components of chylomicrons like phospholipid; therefore, the results may support the potential for these SLN to improve oral GEN bioavailability via intestinal lymphatic absorption.
Collapse
|
17
|
Li Q, Li F, Qi X, Wei F, Chen H, Wang T. RETRACTED: Pluronic® F127 stabilized reduced graphene oxide hydrogel for the treatment of psoriasis: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 195:111246. [PMID: 32659651 DOI: 10.1016/j.colsurfb.2020.111246] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors. Significant similarities were noticed post-publication between this article and an article submitted to the journal on the same day, by an apparently unrelated research group: Hui Li, Yanlu Jia and Chunling Liu, Colloids and Surfaces B: Biointerfaces 195 (2020) 111259 https://doi.org/10.1016/j.colsurfb.2020.111259. Moreover, the authors did not respond to the journal request to comment on these similarities and to provide the raw data, and the Editors decided to retract the article. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and genuine. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. Although this article was published earlier than the article from Colloids and Surfaces B: Biointerfaces 195 (2020) 111259, the Editors decided to retract this article given the concerns on the reliability of the data.
Collapse
Affiliation(s)
- Qiang Li
- Department of Dermatology, Air Force Medicine Center, Air Force Military Medical University, Beijing, 100147, China
| | - Fangmei Li
- Department of Dermatology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, 530201, China
| | - Xixi Qi
- Department of Dermatology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, 530201, China
| | - Fuqiao Wei
- Department of Dermatology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, 530201, China
| | - Hongxiao Chen
- Department of Dermatopathology Sipecialist(s), Linyi People's Hospital, Linyi, Shandong, 276003, China
| | - Ting Wang
- Department of Dermatology, PLA 970 Hospital, Weihai, Shandong, 264200, China.
| |
Collapse
|
18
|
Montané X, Kowalczyk O, Reig-Vano B, Bajek A, Roszkowski K, Tomczyk R, Pawliszak W, Giamberini M, Mocek-Płóciniak A, Tylkowski B. Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules 2020; 25:E3342. [PMID: 32717865 PMCID: PMC7435624 DOI: 10.3390/molecules25153342] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The development of anticancer therapies that involve natural drugs has undergone exponential growth in recent years. Among the natural compounds that produce beneficial effects on human health, polyphenols have shown potential therapeutic applications in cancer due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties. The possibility of combining conventional drugs-which are usually more aggressive than natural compounds-with polyphenols offers very valuable advantages such as the building of more efficient anticancer therapies with less side effects on human health. This review shows a wide range of trials in which polyphenolic compounds play a crucial role as anticancer medicines alone or in combination with other drugs at different stages of cancer: cancer initiation, promotion, and growth or progression. Moreover, the future directions in applications of various polyphenols in cancer therapy are emphasized.
Collapse
Affiliation(s)
- Xavier Montané
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
- Kazimierz Wielki University, Jagiellonska St. 11, 95-067 Bydgoszcz, Poland
| | - Belen Reig-Vano
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza St. 24, 85-092 Bydgoszcz, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Nicolaus Copernicus University in Torun, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland;
| | - Remigiusz Tomczyk
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Wojciech Pawliszak
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Marta Giamberini
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Agnieszka Mocek-Płóciniak
- Department of General and Environmental Microbiology, University of Life Sciences Poznan, ul. Szydłowska 50, 60-656 Poznań, Poland;
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya. Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
19
|
Hazhir N, Chekin F, Raoof JB, Fathi S. A porous reduced graphene oxide/chitosan-based nanocarrier as a delivery system of doxorubicin. RSC Adv 2019; 9:30729-30735. [PMID: 35529364 PMCID: PMC9072489 DOI: 10.1039/c9ra04977k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/09/2019] [Indexed: 02/03/2023] Open
Abstract
Nowadays, the concept of drug transmission is an important topic in the field of drug delivery research. Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. In this study, we report the development of a novel platform for the loading and release of doxorubicin (DOX). It is based on porous reduced graphene oxide (prGO) nanosheets and chitosan (CS) biocompatible polymer, where prGO can be dispersed in chitosan through amide linkages. The loading and release of DOX on the CS-prGO nanocomposite were investigated by voltammetry, FE-SEM, and FTIR and UV-Vis spectroscopy methods. We showed that chitosan-modified prGO (CS-prGO) was an extremely efficient matrix. An efficient loading of DOX (86% at pH 7.00, time 3 h and initial concentration of 0.5 mg mL-1) was observed on CS-prGO as compared to the case of prGO due to the presence of the -OH and -NH2 groups of chitosan. At the normal physiological pH of 7.00, approximately 10% of DOX could be released from CS-prGO in a time span of 1 h; however, when exposed to pH 4.00, 25% of DOX was released in 1 h. After 20 h, 18% and 62% of DOX was released at pH 7.00 and 4.00, respectively. This illustrates the major benefits of the developed approach for biomedical applications.
Collapse
Affiliation(s)
- N Hazhir
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University Amol Iran
| | - F Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University Amol Iran
| | - J B Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran +98-121-2517087 +98-121-2517087
| | - Sh Fathi
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University Amol Iran
| |
Collapse
|
20
|
Lewicka A, Szymański Ł, Rusiecka K, Kucza A, Jakubczyk A, Zdanowski R, Lewicki S. Supplementation of Plants with Immunomodulatory Properties during Pregnancy and Lactation-Maternal and Offspring Health Effects. Nutrients 2019; 11:nu11081958. [PMID: 31434310 PMCID: PMC6723993 DOI: 10.3390/nu11081958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
A pregnant woman’s diet consists of many products, such as fruits, vegetables, cocoa, tea, chocolate, coffee, herbal and fruit teas, and various commercially available dietary supplements, which contain a high number of biological active plant-derived compounds. Generally, these compounds play beneficial roles in women’s health and the development of fetus health. There are, however, some authors who report that consuming excessive amounts of plants that contain high concentrations of polyphenols may negatively affect the development of the fetus and the offspring’s health. Important and problematic issues during pregnancy and lactation are bacterial infections treatment. In the treatment are proposals to use plant immunomodulators, which are generally considered safe for women and their offspring. Additional consumption of biologically active compounds from plants, however, may increase the risk of occurrences to irreversible changes in the offspring’s health. Therefore, it is necessary to carry out safety tests for immunomodulators before introducing them into a maternal diet. Here, we present data from animal experiments for the four most-studied plants immunomodulators genus: Rhodiola, Echinacea, Panax, and Camellia, which were used in maternal nutrition.
Collapse
Affiliation(s)
- Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Łukasz Szymański
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Kamila Rusiecka
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Anna Kucza
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| |
Collapse
|
21
|
Chae HS, Xu R, Won JY, Chin YW, Yim H. Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects. Int J Mol Sci 2019; 20:E2420. [PMID: 31100782 PMCID: PMC6566427 DOI: 10.3390/ijms20102420] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 02/08/2023] Open
Abstract
Increased health awareness among the public has highlighted the health benefits of dietary supplements including flavonoids. As flavonoids target several critical factors to exert a variety of biological effects, studies to identify their target-specific effects have been conducted. Herein, we discuss the basic structures of flavonoids and their anticancer activities in relation to the specific biological targets acted upon by these flavonoids. Flavonoids target several signaling pathways involved in apoptosis, cell cycle arrest, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/AKT kinase, and metastasis. Polo-like kinase 1 (PLK1) has been recognized as a valuable target in cancer treatment due to the prognostic implication of PLK1 in cancer patients and its clinical relevance between the overexpression of PLK1 and the reduced survival rates of several carcinoma patients. Recent studies suggest that several flavonoids, including genistein directly inhibit PLK1 inhibitory activity. Later, we focus on the anticancer effects of genistein through inhibition of PLK1.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Korea.
| | - Rong Xu
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Jae-Yeon Won
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Young-Won Chin
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Korea.
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| |
Collapse
|
22
|
Abstract
The family of graphene has attracted increasing attention on account of their large specific surface area and good mechanical properties in the biomedical field. However, some characteristics like targeted delivery property and drug delivery capacity could not satisfy the need of a drug carrier. Herein, a graphene oxide (GO) nanocarrier was designed by modification of a folic acid (FA) derivative and a β-cyclodextrin (β-CD) derivative in order to improve two properties, respectively. In the first step, reactive or crosslinkable FA and aldehydic β-CD (β-CD-CHO) were designed and synthesized for further modification. In the second step, synthesized functional molecules were coupled onto GO sheets one by one to obtain the GO nanocarrier. IR spectra and XRD results were used to identify the chemical and structural information before and after modification for the GO nanocarrier. The final GO nanocarrier exhibited a typical thin wrinkled sheet morphology of the GO sheet without any influence by two functional molecules. Finally, in vitro evaluation was used to clarify the drug loading and controlling capacity of the nanocarrier as a drug delivery system. The results revealed that the GO nanocarrier had a better CPT loading capacity and showed better controllability for CPT release.
Collapse
|