1
|
Brusini R, Tran NLL, Cailleau C, Domergue V, Nicolas V, Dormont F, Calet S, Cajot C, Jouran A, Lepetre-Mouelhi S, Laloy J, Couvreur P, Varna M. Assessment of Squalene-Adenosine Nanoparticles in Two Rodent Models of Cardiac Ischemia-Reperfusion. Pharmaceutics 2023; 15:1790. [PMID: 37513977 PMCID: PMC10384353 DOI: 10.3390/pharmaceutics15071790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Reperfusion injuries after a period of cardiac ischemia are known to lead to pathological modifications or even death. Among the different therapeutic options proposed, adenosine, a small molecule with platelet anti-aggregate and anti-inflammatory properties, has shown encouraging results in clinical trials. However, its clinical use is severely limited because of its very short half-life in the bloodstream. To overcome this limitation, we have proposed a strategy to encapsulate adenosine in squalene-based nanoparticles (NPs), a biocompatible and biodegradable lipid. Thus, the aim of this study was to assess, whether squalene-based nanoparticles loaded with adenosine (SQAd NPs) were cardioprotective in a preclinical cardiac ischemia/reperfusion model. Obtained SQAd NPs were characterized in depth and further evaluated in vitro. The NPs were formulated with a size of about 90 nm and remained stable up to 14 days at both 4 °C and room temperature. Moreover, these NPs did not show any signs of toxicity, neither on HL-1, H9c2 cardiac cell lines, nor on human PBMC and, further retained their inhibitory platelet aggregation properties. In a mouse model with experimental cardiac ischemia-reperfusion, treatment with SQAd NPs showed a reduction of the area at risk, as well as of the infarct area, although not statistically significant. However, we noted a significant reduction of apoptotic cells on cardiac tissue from animals treated with the NPs. Further studies would be interesting to understand how and through which mechanisms these nanoparticles act on cardiac cells.
Collapse
Affiliation(s)
- Romain Brusini
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Natalie Lan Linh Tran
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Catherine Cailleau
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Valérie Domergue
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, ANIMEX, 17 Avenue des Sciences, 91400 Orsay, France
| | - Valérie Nicolas
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, MIPSIT, 17 Avenue des Sciences, 91400 Orsay, France
| | - Flavio Dormont
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Serge Calet
- Holochem, Rue du Moulin de la Canne, 45300 Pithiviers, France
| | - Caroline Cajot
- Quality Assistance S.A, Technoparc de Thudinie 2, 6536 Thuin, Belgium
| | - Albin Jouran
- Quality Assistance S.A, Technoparc de Thudinie 2, 6536 Thuin, Belgium
| | - Sinda Lepetre-Mouelhi
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Patrick Couvreur
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Mariana Varna
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| |
Collapse
|
2
|
Selective delivery of pentamidine toward cancer cells by self-assembled nanoparticles. Int J Pharm 2022; 625:122102. [PMID: 35961419 DOI: 10.1016/j.ijpharm.2022.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
Pentamidine (PTM) is an aromatic diamidine approved for the treatment of parasitic infections that has been recently proposed for possible repositioning as an anticancer drug. To this aim, efforts have been made to improve its therapeutic efficacy and reduce associated adverse effects through both covalent derivatization and association with nanocarriers. To efficiently encapsulate PTM into biocompatible nanoparticles and to enhance its selectivity toward cancer cells, a squalene (SQ) derivative (1,1',2-tris-norsqualenoic acid, SQ-COOH) was selected to prepare PTM-loaded nanocarriers. Indeed, SQ and its derivatives self-assemble into nanoparticles in aqueous media. Furthermore, SQ-bioconjugates strongly interact with low-density lipoproteins (LDL), thus favoring preferential accumulation in cells overexpressing the LDL receptor (LDLR). We report here the preparation of nanocarriers by ion-pairing between the negatively charged SQ-COOH and the positively charged PTM free base (PTM-B), which allowed the covalent grafting of SQ to PTM to be avoided. The nanoparticles were characterized (mean size < 200 nm and zeta potential < -20 mV for SQ-COOH/PTM-B 3:1 molar ratio) and molecular modelling studies of the SQ-COOH/PTM-B interaction confirmed the nanocarrier stability. Finally, the ability to indirectly target LDLR-overexpressing cancer cells was evaluated by in vitro cell viability assays and confirmed by LDLR silencing, serum privation and simvastatin treatment.
Collapse
|
3
|
Caillaud M, Gobeaux F, Hémadi M, Boutary S, Guenoun P, Desmaële D, Couvreur P, Wien F, Testard F, Massaad-Massade L. Supramolecular organization and biological interaction of squalenoyl siRNA nanoparticles. Int J Pharm 2021; 609:121117. [PMID: 34562556 DOI: 10.1016/j.ijpharm.2021.121117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Small interfering RNAs (siRNA) are attractive and powerful tools to inhibit the expression of a targeted gene. However, their extreme hydrophilicities combined with a negative charge and short plasma half-life counteract their use as therapeutics. Previously, we chemically linked siRNA to squalene (SQ) which self-assembled as nanoparticles (NPs) with pharmacological efficiency in cancers and recently in a hereditary neuropathy. In order to understand the siRNA-SQ NP assembly and fate once intravenously injected, the present study detailed characterization of siRNA-SQ NP structure and its interaction with serum components. From SAXS and SANS analysis, we propose that the siRNA-SQ bioconjugate self-assembled as 11-nm diameter supramolecular assemblies, which are connected one to another to form spherical nanoparticles of around 130-nm diameter. The siRNA-SQ NPs were stable in biological media and interacted with serum components, notably with albumin and LDL. The high specificity of siRNA to decrease or normalize gene expression and the high colloidal stability when encapsulated into squalene nanoparticles offer promising targeted therapy with wide applications for pathologies with gene expression dysregulation.
Collapse
Affiliation(s)
- Marie Caillaud
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Frédéric Gobeaux
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Miryana Hémadi
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 75013 Paris, France
| | - Suzan Boutary
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | | | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Liliane Massaad-Massade
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.
| |
Collapse
|
4
|
Rahmani Del Bakhshayesh A, Akbarzadeh A, Alihemmati A, Tayefi Nasrabadi H, Montaseri A, Davaran S, Abedelahi A. Preparation and characterization of novel anti-inflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nano-particles for sustained NSAID delivery. Drug Deliv 2020; 27:269-282. [PMID: 32009480 PMCID: PMC7034065 DOI: 10.1080/10717544.2020.1716881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/02/2023] Open
Abstract
Piroxicam (PX), a main member of non-steroidal anti-inflammatory drugs (NSAIDs), is mainly used orally, which causes side effects of the gastrointestinal tract. It also has systemic effects when administered intramuscularly. Intra-articular (IA) delivery and encapsulation of PX in biodegradable poly-ε-caprolactone (PCL) nanoparticles (NPs) offer potential advantages over conventional oral delivery. The purpose of this study is the development of a new type of anti-inflammatory bio-agents containing collagen and PX-loaded NPs, as an example for an oral formulation replacement, for the prolonged release of PX. In this study, the PX was encapsulated in PCL NPs (size 102.7 ± 19.37 nm, encapsulation efficiency 92.83 ± 0.4410) by oil-in-water (o/w) emulsion solvent evaporation method. Nanoparticles were then characterized for entrapment efficiency, percent yield, particle size analysis, morphological characteristics, and in vitro drug release profiles. Eventually, the NPs synthesized with collagen were conjugated so that the NPs were trapped in the collagen sponges using a cross-linker. Finally, biocompatibility tests showed that the anti-inflammatory agents made in this study had no toxic effect on the cells. Based on the results, it appears that PX-loaded PCL NPs along with collagen (PPCLnp-Coll) can be promising for IA administration based on particulate drug delivery for the treatment of arthritis.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|