1
|
Rahiman N, Kesharwani P, Karav S, Sahebkar A. Curcumin-based nanofibers: A promising approach for cancer therapy. Pathol Res Pract 2024; 266:155791. [PMID: 39742832 DOI: 10.1016/j.prp.2024.155791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Nanofibers are among the promising platforms for efficient delivery of drugs (both hydrophilic and hydrophobic) through harnessing polymers with different natures as their base. Hydrophobic low-solubility agents such as curcumin could be incorporated in various types of electrospun nanofibers for different aims in drug delivery, such as enhancing its solubility, making this agent sustained release with improved pharmacological efficacy. Through using this nanoplatform, curcumin may become more bioavailable and more efficcious in the field of cancer therapy as well as tissue engineering and wound healing for local delivery of this anti-inflammatory and antioxidant agent. In this review, the characteristics of curcumin-loaded nanofibers, their targeting potential or stimuli-responsiveness accompanied with therapeutic anti-cancerous applications of them (mostly in local application) are securitized. These nanofibers follow the aim of enhancing curcumin's therapeutic effectiveness and release profile. We laso elaborate on the mechanisms of action through which curcumin exerts its effect on various cancerous cells after its incorporation in various types of nanofibers which have been prepared by exploiting different polymers.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Nalinbenjapun S, Sripetthong S, Basit A, Suksuwan A, Sajomsang W, Ovatlarnporn C. Fabrication of curcumin-loaded nano-micelles based on quercetin-quarternary ammonium-chitosan (Qu-QCS) conjugate and evaluation of synergistic effect with doxorubicin against breast cancer. Int J Biol Macromol 2024; 281:135904. [PMID: 39482127 DOI: 10.1016/j.ijbiomac.2024.135904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024]
Abstract
The applications of quarternized chitosans have achieved notable success in the development of drug-delivery systems. This study reported the preparation of quercetin-quarternized chitosan (Qu-QCS) conjugate and its application for the fabrication of stable and safe curcumin (cur) loaded nano-micelles with high targeting ability and selectivity towards the breast cancer cell lines. Moreover, doxorubicin (dox) was co-treated with the nanomicelles to enhance the efficacy and reduce the cardiotoxic effects of dox. Structural properties of Qu-QCS were evaluated by FTIR, DSC, and XRD analysis and the yield obtained was 48.82 %. The nano-micelles obtained showed spherical shape, <200 nm size, 48.38 % entrapment efficiency, prolonged stability at 4 °C and pH-responsive release pattern. The cur-loaded nano-micelles showed higher activity and selectivity against breast cancer (MCF-7 and MDA-MB-231) cell lines with enhanced internalization, lower toxicity to the normal cardiomyoctyes (H9C2), enhanced the cell cycle arrest at the G2/M phase of the breast cancer cell lines and induced apoptosis with high intensity compared to pure cur. Moreover, the co-treatment of dox with cur-loaded Qu-QCS nano-micelles showed increased anticancer activity and reduced cardiotoxicity. Overall, this study suggests the potential applications of cur-loaded Qu-QCS micelles in the delivery of chemotherapeutic agents and complementary support in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Acharee Suksuwan
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warayuth Sajomsang
- Nanodelivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Phathum Thani 12120, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
3
|
Lee JR, Kim YM, Kim EJ, Jang MK, Park SC. Advancing Breast Cancer Therapeutics: Targeted Gene Delivery Systems Unveiling the Potential of Estrogen Receptor-Targeting Ligands. Biomater Res 2024; 28:0087. [PMID: 39319107 PMCID: PMC11420687 DOI: 10.34133/bmr.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Although curcumin has been well known as a phytochemical drug that inhibits tumor promotion by modulating multiple molecular targets, its potential was not reported as a targeting ligand in the field of drug delivery system. Here, we aimed to assess the tumor-targeting efficiency of curcumin and its derivatives such as phenylalanine, cinnamic acid, coumaric acid, and ferulic acid. Curcumin exhibited a high affinity for estrogen receptors through a pull-down assay using the membrane proteins of MCF-7, a breast cancer cell line, followed by designation of a polymer-based gene therapy system. As a basic backbone for gene binding, dextran grafted with branched polyethylenimine was synthesized, and curcumin and its derivatives were linked to lysine dendrimers. In vitro and in vivo antitumor effects were evaluated using plasmid DNA expressing anti-bcl-2 short hairpin RNA. All synthesized gene carriers showed excellent DNA binding, protective effects against nuclease, and gene transfection efficiency in MCF-7 and SKBr3 breast cancer cells. Preincubation with curcumin or 17α-estradiol resulted in a marked dose-dependent decrease in gene transfer efficiency and suggested targeting specificity of curcumin. Our study indicates the potential of curcumin and its derivatives as novel targeting ligands for tumor cells and tissues.
Collapse
Affiliation(s)
- Jung Ro Lee
- National Institute of Ecology (NIE), Seocheon 33657, Korea
| | - Young-Min Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Korea
| | - Eun-Ji Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Korea
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Korea
| | - Seong-Cheol Park
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Korea
| |
Collapse
|
4
|
Sánchez-Bodón J, Moreno-Benitez I, Laza JM, Larrea-Sebal A, Martin C, Irastorza I, Silvan U, Vilas-Vilela JL. Multifunctional curcumin-based polymer coating: A promising platform against bacteria, inflammation and coagulation. Colloids Surf B Biointerfaces 2024; 241:114048. [PMID: 38954936 DOI: 10.1016/j.colsurfb.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The extensive use of polymers in the medical field has facilitated the development of various devices and implants, contributing to the restoration of organ function. However, despite their advantages such as biocompatibility and robustness, these materials often face challenges like bacterial contamination and subsequent inflammation, leading to implant-associated infections (IAI). Integrating implants effectively is crucial to prevent bacterial colonization and reduce inflammatory responses. To overcome these major issues, surface chemical modifications have been extensively explored. Indeed, click chemistry, and particularly, copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has emerged as a promising approach for surface functionalization without affecting material bulk properties. Curcumin, known for its diverse biological activities, suffers from low solubility and stability. To enhance its bioavailability, bioconjugation strategy has garnered attention in recent years. This study represents pioneering work in immobilizing curcumin derivative onto polyethylene terephthalate (PET) surfaces, aiming to combat bacterial adhesion, inflammation and coagulation. Before curcumin derivative bioconjugation, a fluorophore, dansyl derivative, was employed in order to monitor and determine the efficiency of the proposed methodology. Previous surface chemical modifications were required for the immobilization of both dansyl and curcumin derivatives. Ultraviolet-Visible (UV-Vis) demonstrated the amidation functionalization of PET surface. Other surface characterization techniques including X-ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance Fourier Transformed Infrared (ATR-FTIR), Scanning Electron Microscopy (SEM) and contact angle, among others, confirmed also the conjugation of both dansyl and curcumin derivatives. On the other hand, different biological assays corroborated that curcumin derivative immobilized PET surfaces do not exhibit cytotoxicity effect. Additionally, corresponding inflammation test were performed, indicating that these polymeric surfaces do not produce inflammation and, when curcumin derivative is immobilized, they decrease the inflammation marker level (IL-6). Moreover, the bacterial growth of both Gram positive and Gram negative bacteria were measured, demonstrating that the immobilization of curcumin derivative on PET provided antibacterial properties to the material. Finally, hemolysis rate analysis and whole blood clotting assay demonstrated the antithrombogenic effect of PET-Cur surfaces as well as no hemolysis concern in the fabricated functional surfaces.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain
| | - Isabel Moreno-Benitez
- Macromolecular Chemistry Group (LABQUIMAC), Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain.
| | - José Manuel Laza
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain
| | - Asier Larrea-Sebal
- University of the Basque Country (UPV/EHU), Department of Biochemistry and Molecular Biology, Leioa 48940, Spain; Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa 48940, Spain; Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Cesar Martin
- University of the Basque Country (UPV/EHU), Department of Biochemistry and Molecular Biology, Leioa 48940, Spain; Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa 48940, Spain; Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Igor Irastorza
- University of the Basque Country, (UPV/EHU), Department of Cell Biology and Histology, Faculty of Medicine, Leioa 48940, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
5
|
Ming T, Lei J, Peng Y, Wang M, Liang Y, Tang S, Tao Q, Wang M, Tang X, He Z, Liu X, Xu H. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother Res 2024; 38:3954-3972. [PMID: 38837315 DOI: 10.1002/ptr.8258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024]
Abstract
Driven by iron-dependent lipid peroxidation, ferroptosis is regulated by p53 and solute carrier family 7 member 11 (SLC7A11)/glutathione/glutathione peroxidase 4 (GPX4) axis in colorectal cancer (CRC). This study aimed to investigate the influence of curcumin (CUR) on ferroptosis in CRC. The efficacies of CUR on the malignant phenotype of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing, and clonogenic assays. The effects of CUR on ferroptosis of CRC cells were evaluated by transmission electron microscopy, lactate dehydrogenase release assay, Fe2+ staining, and analyses of reactive oxygen species, lipid peroxide, malondialdehyde, and glutathione levels. CUR's targets in ferroptosis were predicted by network pharmacological study and molecular docking. With SW620 xenograft tumors, the efficacy of CUR on CRC was investigated, and the effects of CUR on ferroptosis were assessed by detection of Fe2+, malondialdehyde, and glutathione levels. The effects of CUR on expressions of p53, SLC7A11, and GPX4 in CRC cells and tumors were analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. CUR suppressed the proliferation, migration, and clonogenesis of CRC cells and xenograft tumor growth by causing ferroptosis, with enhanced lactate dehydrogenase release and Fe2+, reactive oxygen species, lipid peroxide, and malondialdehyde levels, but attenuated glutathione level in CRC. In silico study indicated that CUR may bind p53, SLC7A11, and GPX4, consolidated by that CUR heightened p53 but attenuated SLC7A11 and GPX4 mRNA and protein levels in CRC. CUR may exert an inhibitory effect on CRC by inducing ferroptosis via regulation of p53 and SLC7A11/glutathione/GPX4 axis.
Collapse
Affiliation(s)
- Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Muqing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomeng Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyu He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Sun X, Jia X, Tan Z, Fan D, Chen M, Cui N, Liu A, Liu D. Oral Nanoformulations in Cardiovascular Medicine: Advances in Atherosclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:919. [PMID: 39065770 PMCID: PMC11279631 DOI: 10.3390/ph17070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| |
Collapse
|
7
|
Nangare S, Ramraje G, Patil P. Formulation of lactoferrin decorated dextran based chitosan-coated europium metal-organic framework for targeted delivery of curcumin. Int J Biol Macromol 2024; 259:129325. [PMID: 38219935 DOI: 10.1016/j.ijbiomac.2024.129325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Hepatocellular carcinoma (HPTC) currently ranks as the third leading cause of cancer-related mortality, necessitating an advanced formulation strategy. Recently, lactoferrin (Lf) has been utilized as a specific targeting ligand in HPTC due to its high specificity towards the asialoglycoprotein receptor expressed in cancer cells. Therefore, we present the fabrication of an Lf-decorated carboxymethyl dextran-encased chitosan-coated europium metal-organic framework-based nanobioconjugate (Lf-CMD-CS-CUR@Eu-MOF) for targeted curcumin (CUR) delivery. Briefly, CUR was loaded into Eu-MOF, followed by coating cationic 'CS' on the CUR@Eu-MOF surface. Simultaneously, Lf-decorated CMD was prepared via an esterification reaction. Subsequently, Lf-CMD-CS-CUR@Eu-MOF was synthesized using the Maillard reaction. Various spectral characterizations, drug entrapment, drug content, in vitro drug release, biocompatibility and cell cytotoxicity studies were performed. It exhibited an entrapment efficiency of 88.87 ± 2.1 %, a drug content of 3.45 ± 0.98 %, and a drug loading rate of 34.85 ± 0.6 mg/g. Furthermore, the Lf-CMD-CS-CUR@Eu-MOF exhibits excellent biocompatibility with normal cells. The in vitro dissolution study confirmed a release of 78.12 % of 'CUR' in pH 5.8 phosphate buffer (over 120 h), attributed to the controlled release rate by the 'CS' coating on the surface of CUR@Eu-MOF. The BEL-7402 cell line showed concentration-dependent toxicity of nanobioconjugate to cancerous cells. Therefore, when 'Lf' is surface-decorated onto an appropriate polymeric material, it gains the capability to function as a carrier for transporting 'CUR' to the precise target site within HPTC. In conclusion, Lf-CMD incorporated CS-coated Eu-MOF can provide a promising approach for targeted drug delivery in HPTC management.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Dist: Dhule, Shirpur 425405, MS, India
| | - Gautam Ramraje
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Dist: Dhule, Shirpur 425405, MS, India; Department of Pharmaceutical Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research, Dist: Dhule, Shirpur 425405, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Dist: Dhule, Shirpur 425405, MS, India.
| |
Collapse
|
8
|
Jantawong C, Chamgramol Y, Intuyod K, Priprem A, Pairojkul C, Klungsaeng S, Dangtakot R, Pongking T, Sitthirach C, Pinlaor P, Waraasawapati S, Pinlaor S. Curcumin-loaded nanocomplexes alleviate the progression of fluke-related cholangiocarcinoma in hamsters. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Curcumin-loaded nanocomplexes (CNCs) previously demonstrated lower toxicity and extended release better than is the case for free curcumin. Here, we evaluated the efficacy of CNCs against opisthorchiasis-associated cholangiocarcinoma (CCA) in hamsters.
Method
Dose optimization (dose and frequency) was performed over a 1-month period using hamsters, a model that is widely used for study of opisthorchiasis-associated cholangiocarcinoma. In the main experimental study, CCA was induced by a combination of fluke, Opisthorchis viverrini (OV), infection and N-nitrosodimethylamine (NDMA) treatment. Either blank (empty) nanocomplexes (BNCs) or different concentrations of CNCs (equivalent to 10 and 20 mg cur/kg bw) were given to hamsters thrice a week for 5 months. The histopathological changes, biochemical parameters, and the expression of inflammatory/oncogenic transcription factors were investigated. In addition, the role of CNCs in attenuating CCA genesis, as seen in an animal model, was also confirmed in vitro using CCA cell lines.
Results
The optimization study revealed that treatment with CNCs at a dose equivalent to 10 mg cur/kg bw, thrice a week for 1 month, led to a greater reduction of inflammation and liver injury induced in hamsters by OV + NDMA than did treatments at other dose rates. Oral administration with CNCs (10 mg cur/kg bw), thrice a week for 5 months, significantly increased survival rate, reduced CCA incidence, extent of tumor development, cholangitis, bile duct injury and cholangiofibroma. In addition, this treatment decreased serum ALP and ALT activities and suppressed expression of NF-κB, FOXM1, HMGB1, PCNA and formation of 8-nitroguanine. Treatment of CCA cell lines with CNCs also reduced cell proliferation and colony formation, similar to those treated with NF-κB and/or FOXM1 inhibitors.
Conclusion
CNCs (10 mg cur/kg bw) attenuate the progression of fluke-related CCA in hamsters partly via a NF-κB and FOXM1-mediated pathway.
Collapse
|
9
|
Bapat RA, Bedia SV, Bedia AS, Yang HJ, Dharmadhikari S, Abdulla AM, Chaubal TV, Bapat PR, Abullais SS, Wahab S, Kesharwani P. Current appraises of therapeutic applications of nanocurcumin: A novel drug delivery approach for biomaterials in dentistry. ENVIRONMENTAL RESEARCH 2023; 238:116971. [PMID: 37717805 DOI: 10.1016/j.envres.2023.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Curcumin is a natural herb and polyphenol that is obtained from the medicinal plant Curcuma longa. It's anti-bacterial, anti-inflammatory, anti-cancer, anti-mutagenic, antioxidant and antifungal properties can be leveraged to treat a myriad of oral and systemic diseases. However, natural curcumin has weak solubility, limited bioavailability and undergoes rapid degradation, which severely limits its therapeutic potential. To overcome these drawbacks, nanocurcumin (nCur) formulations have been developed for improved biomaterial delivery and enhanced treatment outcomes. This novel biomaterial holds tremendous promise for the treatment of various oral diseases, the majority of which are caused by dental biofilm. These include dental caries, periodontal disease, root canal infection and peri-implant diseases, as well as other non-biofilm mediated oral diseases such as oral cancer and oral lichen planus. A number of in-vitro studies have demonstrated the antibacterial efficacy of nCur in various formulations against common oral pathogens such as S. mutans, P. gingivalis and E. faecalis, which are strongly associated with dental caries, periodontitis and root canal infection, respectively. In addition, some clinical studies were suggestive of the notion that nCur can indeed enhance the clinical outcomes of oral diseases such as periodontitis and oral lichen planus, but the level of evidence was very low due to the small number of studies and the methodological limitations of the available studies. The versatility of nCur to treat a diverse range of oral diseases augurs well for its future in dentistry, as reflected by rapid pace in which studies pertaining to this topic are published in the scientific literature. In order to keep abreast of the latest development of nCur in dentistry, this narrative review was undertaken. The aim of this narrative review is to provide a contemporaneous update of the chemistry, properties, mechanism of action, and scientific evidence behind the usage of nCur in dentistry.
Collapse
Affiliation(s)
- Ranjeet A Bapat
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Sumit V Bedia
- Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital Navi Mumbai, Maharashtra, 400614, India
| | - Aarti S Bedia
- Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital Navi Mumbai, Maharashtra, 400614, India
| | - Ho Jan Yang
- Oral Health Division, Ministry of Health, Malaysia
| | - Suyog Dharmadhikari
- D Y Patil Deemed to Be University School of Dentistry, Nerul, Navi-mumbai, 400706, India
| | - Anshad Mohamed Abdulla
- Department of Pediatric dentistry and Orthodontic Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Tanay V Chaubal
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, 57000, Malaysia
| | | | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
10
|
Shen Q, Pan X, Li Y, Li J, Zhang C, Jiang X, Liu F, Pang B. Lysosomes, curcumin, and anti-tumor effects: how are they linked? Front Pharmacol 2023; 14:1220983. [PMID: 37484013 PMCID: PMC10359997 DOI: 10.3389/fphar.2023.1220983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Curcumin is a natural active ingredient from traditional Chinese medicine (TCM) that has multi-target characteristics to exert extensive pharmacological activities and thus has been applied in the treatment of various diseases such as cancer, cardiovascular diseases, nervous system, and autoimmune disorders. As an important class of membranous organelles in the intracellular membrane system, lysosomes are involved in biological processes such as programmed cell death, cell metabolism, and immune regulation, thus affecting tumor initiation and progression. It has been shown that curcumin can modulate lysosomal function through the aforementioned pathways, thereby affecting tumor proliferation, invasion, metastasis, drug resistance, and immune function. This review briefly elaborated the regulatory mechanisms of lysosome biogenesis and summarized curcumin-related studies with its anti-tumor effect, providing a reference for the clinical application of curcumin and anti-tumor research targeting lysosomes.
Collapse
Affiliation(s)
- Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Pan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Ai C, Zhao C, Xiang C, Zheng Y, Zhong S, Teng H, Chen L. Gum arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin. Food Chem X 2023; 18:100724. [PMID: 37397193 PMCID: PMC10314165 DOI: 10.1016/j.fochx.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
In this study, a kind of nanoparticle prepared using gum arabic as a sole wall material for loading curcumin was obtained. The properties and digestive characteristics of the curcumin-loaded nanoparticle were determined. Results showed that the maximum loading amount of the nanoparticle was 0.51 µg/mg with an approximately 500 nm size. The Fourier transform infrared (FTIR) spectrum showed that the complexation was mainly related to the -C[bond, double bond]O, -CH, and -C-O-C- groups. The curcumin-loaded nanoparticle exhibited good stability under highly concentrated salinity stress, and the stability of the curcumin loaded in nanoparticles was significantly higher than that of free curcumin under ultraviolet radiation. The curcumin loaded in nanoparticle was released mainly in the intestinal digestion stage, and the release process was sensitive to the pH changes rather than protease. In conclusion, these nanoparticles can be a potential nanocarrier for enhancing the stability of curcumin which can be applied in the salt-containing food system.
Collapse
Affiliation(s)
| | | | - Chunhong Xiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yimei Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
12
|
Fu L, Tan S, Si R, Qiang Y, Wei H, Huang B, Shi M, Fang L, Fu J, Zeng S. Characterization, stability and antioxidant activity of curcumin nanocomplexes with soy protein isolate and pectin. Curr Res Food Sci 2023; 6:100530. [PMID: 37377496 PMCID: PMC10290990 DOI: 10.1016/j.crfs.2023.100530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Curcumin (Cur) has antioxidant, anti-inflammatory and other biological activities, but its poor stability, low water solubility and other defects limit the application. Herein, Cur was nanocomposited with soy isolate protein (SPI) and pectin (PE) for the first time and its characterization, bioavailability and antioxidant activity were discussed. The optimal encapsulation process of SPI-Cur-PE was as follow: the addition amount of PE was 4 mg, Cur was 0.6 mg and at pH of 7. It was observed by SEM that SPI-Cur-PE were partially aggregated. The average particle size of SPI-Cur-PE was 210.1 nm and the zeta potential was -31.99 mV. Through XRD, FT-IR and DSC analysis, the SPI-Cur-PE was formed through hydrophobic interaction and electrostatic interaction. The SPI-Cur-PE released more slowly in simulated gastrointestinal treatment and displayed higher photostability and thermal stability. SPI-Cur-PE, SPI-Cur and free Cur had scavenging activities for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals.
Collapse
Affiliation(s)
- Lijuan Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Suo Tan
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ruiru Si
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Yueyue Qiang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Wei
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Biao Huang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Mengzhu Shi
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ling Fang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Jianwei Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
13
|
Sripetthong S, Eze FN, Sajomsang W, Ovatlarnporn C. Development of pH-Responsive N-benzyl- N- O-succinyl Chitosan Micelles Loaded with a Curcumin Analog (Cyqualone) for Treatment of Colon Cancer. Molecules 2023; 28:2693. [PMID: 36985665 PMCID: PMC10057334 DOI: 10.3390/molecules28062693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023] Open
Abstract
This work aimed at preparing nanomicelles from N-benzyl-N,O-succinyl chitosan (NBSCh) loaded with a curcumin analog, 2,6-bis((3-methoxy-4-hydroxyphenyl) methylene) cyclohexanone, a.k.a. cyqualone (CL), for antineoplastic colon cancer chemotherapy. The CL-loaded NBSCh micelles were spherical and less than 100 nm in size. The entrapment efficiency of CL in the micelles ranged from 13 to 39%. Drug release from pristine CL was less than 20% in PBS at pH 7.4, whereas the release from CL-NBSCh micelles was significantly higher. The release study of CL-NBSCh revealed that around 40% of CL content was released in simulated gastric fluid at pH 1.2; 79 and 85% in simulated intestinal fluids at pH 5.5 and 6.8, respectively; and 75% in simulated colonic fluid at pH 7.4. CL-NBSCh showed considerably high selective cytotoxicity towards mucosal epithelial human colon cancer (HT-29) cells and lower levels of toxicity towards mouse connective tissue fibroblasts (L929). CL-NBSCh was also more cytotoxic than the free CL. Furthermore, compared to free CL, CL-NBSCh micelles were found to be more efficient at arresting cell growth at the G2/M phase, and induced apoptosis earlier in HT-29 cells. Collectively, these results indicate the high prospective potential of CL-loaded NBSCh micelles as an oral therapeutic intervention for colon cancer.
Collapse
Affiliation(s)
- Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Fredrick Nwude Eze
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Warayuth Sajomsang
- Nanodelivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Phathum Thani 12120, Thailand;
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
14
|
Safari S, Davoodi P, Soltani A, Fadavipour M, Rezaeian A, Heydari F, Khazeei Tabari MA, Akhlaghdoust M. Curcumin effects on chronic obstructive pulmonary disease: A systematic review. Health Sci Rep 2023; 6:e1145. [PMID: 36890804 PMCID: PMC9987200 DOI: 10.1002/hsr2.1145] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/21/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a common disease of the lungs known as the third reason for death worldwide. Frequent COPD exacerbations compel health care workers to apply interventions that are not adverse effect free. Accordingly, adding or replacing Curcumin, a natural meal flavoring, may indicate advantages in this era by its antiproliferative and anti-inflammatory effects. Methods The PRISMA checklist was employed for the systematic review study. On June 3, 2022, PubMed/Medline, Scopus, and Web of Science were searched for studies associated with COPD and Curcumin in the last 10 years. Duplicate or non-English publications and articles with irrelevant titles and abstracts were excluded. Also, preprints, reviews, short communications, editorials, letters to the editor, comments, conference abstracts, and conference papers were not included. Results Overall, 4288 publications were found eligible, after the screening, 9 articles were finally included. Among them, one, four, and four in vitro, in vivo, and both in vivo and in vitro research exist respectively. According to the investigations, Curcumin can inhibit alveolar epithelial thickness and proliferation, lessen the inflammatory response, remodel the airway, produce ROS, alleviate airway inflammation, hinder emphysema and prevent ischemic complications. Conclusion Consequently, the findings of the current review demonstrate that Curcumin's modulatory effects on oxidative stress, cell viability, and gene expression could be helpful in COPD management. However, for data confirmation, further randomized clinical trials are required.
Collapse
Affiliation(s)
- Saeid Safari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
- USERN Office, Functional Neurosurgery Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Poorya Davoodi
- USERN Office, Functional Neurosurgery Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Molecular MedicineUniversity of PaduaPaduaItaly
| | - Afsaneh Soltani
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammadreza Fadavipour
- USERN OfficeAbadan University of Medical SciencesAbadanIran
- Department of Infectious Disease, School of MedicineAbadan University of Medical SciencesAbadanIran
| | - AhmadReza Rezaeian
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Fateme Heydari
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Amin Khazeei Tabari
- Student Research CommitteeMazandaran University of Medical SciencesSariIran
- USERN OfficeMazandaran University of Medical SciencesSariIran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
- USERN Office, Functional Neurosurgery Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Chroni A, Mavromoustakos T, Pispas S. Curcumin-Loaded PnBA- b-POEGA Nanoformulations: A Study of Drug-Polymer Interactions and Release Behavior. Int J Mol Sci 2023; 24:4621. [PMID: 36902057 PMCID: PMC10003461 DOI: 10.3390/ijms24054621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The current study focuses on the development of innovative and highly-stable curcumin (CUR)-based therapeutics by encapsulating CUR in biocompatible poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) micelles. State-of-the-art methods were used to investigate the encapsulation of CUR in PnBA-b-POEGA micelles and the potential of ultrasound to enhance the release of encapsulated CUR. Dynamic light scattering (DLS), attenuated total reflection Fourier transform infrared (ATR-FTIR), and ultraviolet-visible (UV-Vis) spectroscopies confirmed the successful encapsulation of CUR within the hydrophobic domains of the copolymers, resulting in the formation of distinct and robust drug/polymer nanostructures. The exceptional stability of the CUR-loaded PnBA-b-POEGA nanocarriers over a period of 210 days was also demonstrated by proton nuclear magnetic resonance (1H-NMR) spectroscopy studies. A comprehensive 2D NMR characterization of the CUR-loaded nanocarriers authenticated the presence of CUR within the micelles, and unveiled the intricate nature of the drug-polymer intermolecular interactions. The UV-Vis results also indicated high encapsulation efficiency values for the CUR-loaded nanocarriers and revealed a significant influence of ultrasound on the release profile of CUR. The present research provides new understanding of the encapsulation and release mechanisms of CUR within biocompatible diblock copolymers and has significant implications for the advancement of safe and effective CUR-based therapeutics.
Collapse
Affiliation(s)
- Angeliki Chroni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Zografou, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
16
|
Garshasbi HR, Naghib SM. Smart Stimuli-responsive Alginate Nanogels for Drug Delivery Systems and Cancer Therapy: A Review. Curr Pharm Des 2023; 29:3546-3562. [PMID: 38115614 DOI: 10.2174/0113816128283806231211073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles' biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
17
|
Lei F, Li P, Chen T, Wang Q, Wang C, Liu Y, Deng Y, Zhang Z, Xu M, Tian J, Ren W, Li C. Recent advances in curcumin-loaded biomimetic nanomedicines for targeted therapies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Islamov II, Yusupova AV, D’yakonov VA, Dzhemilev UM. Synthesis of New Hybrid Molecules Based on Isomerically Pure 5Z,9Z-Alkadienoic Acids and Monocarbonyl Curcumin Analog. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
19
|
Kumari A, Raina N, Wahi A, Goh KW, Sharma P, Nagpal R, Jain A, Ming LC, Gupta M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics 2022; 14:2288. [PMID: 36365107 PMCID: PMC9698633 DOI: 10.3390/pharmaceutics14112288] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023] Open
Abstract
Wound healing is an intricate process of tissue repair or remodeling that occurs in response to injury. Plants and plant-derived bioactive constituents are well explored in the treatment of various types of wounds. Curcumin is a natural polyphenolic substance that has been used since ancient times in Ayurveda for its healing properties, as it reduces inflammation and acts on several healing stages. Several research studies for curcumin delivery at the wound site reported the effectiveness of curcumin in eradicating reactive oxygen species and its ability to enhance the deposition of collagen, granulation tissue formation, and finally, expedite wound contraction. Curcumin has been widely investigated for its wound healing potential but its lower solubility and rapid metabolism, in addition to its shorter plasma half-life, have limited its applications in wound healing. As nanotechnology has proven to be an effective technique to accelerate wound healing by stimulating appropriate mobility through various healing phases, curcumin-loaded nanocarriers are used for targeted delivery at the wound sites. This review highlights the potential of curcumin and its nanoformulations, such as liposomes, nanoparticles, and nano-emulsions, etc. in wound healing. This paper emphasizes the numerous biomedical applications of curcumin which collectively prepare a base for its antibiofilm and wound-healing action.
Collapse
Affiliation(s)
- Amrita Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Raina
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Abhishek Wahi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Riya Nagpal
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Atul Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| |
Collapse
|
20
|
Cai Y, Huang C, Zhou M, Xu S, Xie Y, Gao S, Yang Y, Deng Z, Zhang L, Shu J, Yan T, Wan CC. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154306. [PMID: 35809376 DOI: 10.1016/j.phymed.2022.154306] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in clinical inpatients, and it continues a high morbidity and mortality rate despite many clinical treatment measures. AKI is triggered by infections, surgery, heavy metal exposure and drug side effects, but current chemical drugs often fall short of expectations for AKI treatment and have toxic side effects. Therefore, finding new interventions and treatments, especially of natural origin, is of remarkable clinical significance and application. The herbal monomer curcumin is a natural phenolic compound extracted from the plant Curcuma longa and showed various biological activities, including AKI. Furthermore, recent studies have shown that curcumin restores renal function by modulating the immune system and the release of inflammatory mediators, scavenging oxygen free radicals, reducing apoptosis and improving mitochondrial dynamics. However, curcumin has a low bioavailability, which limits its clinical application. For this reason, it is essential to investigate the therapeutic effects and molecular mechanisms of curcumin in AKI, as well as to improve its bioavailability for curcumin formulation development and clinical application. PURPOSE This review summarizes the sources, pharmacokinetics, and limitations in the clinical application of curcumin and explores methods to optimize its bioavailability using nanotechnology. In particular, the therapeutic effects and molecular mechanisms of curcumin on AKI are highlighted to provide a theoretical basis for AKI treatment in clinical practices. METHODS This review was specifically searched by means of a search of three databases (Web of Science, PubMed and Science Direct), till December 2021. Search terms were "Curcumin", "Acute kidney injury", "AKI", " Pharmacokinetics", "Mitochondria" and "Nano formulations". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review) RESULTS: Studies have shown that curcumin responded to AKI-induced renal injury and restored renal tubular epithelial cell function by affecting multiple signaling pathways in AKI models induced by factors such as cisplatin, lipopolysaccharide, ischemia/reperfusion, gentamicin and potassium dichromate. Curcumin was able to affect NF-κB signaling pathway and reduce the expression of IL-1β, IL-6, IL-8 and TNF-α, thus preventing renal inflammatory injury. In the prevention of renal tubular oxidative damage, curcumin reduced ROS production by activating the activity of Nrf2, HO-1 and PGC-1α. In addition, curcumin restored mitochondrial homeostasis by upregulating OPA1 and downregulating DRP1 expression, while reducing apoptosis by inhibiting the caspase-3 apoptotic pathway. In addition, due to the low bioavailability and poor absorption of curcumin in vivo, curcumin nanoformulations including nanoparticles, liposomes, and polymeric micelles are formulated to improve the bioavailability. CONCLUSION This review provides new ideas for the use of curcumin in the prevention and treatment of AKI by modulating the molecular targets of several different cellular signaling pathways.
Collapse
Affiliation(s)
- Yi Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chaoming Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyu Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shiqi Xu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongwan Xie
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yantianyu Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zirong Deng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Libei Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
21
|
Polysaccharide-based nanoparticles fabricated from oppositely charged curdlan derivatives for curcumin encapsulation. Int J Biol Macromol 2022; 213:923-933. [DOI: 10.1016/j.ijbiomac.2022.05.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022]
|
22
|
Su Y, Chen Y, Zhang L, Adhikari B, Xu B, Li J, Zheng T. Synthesis and characterization of lotus seed protein-based curcumin microcapsules with enhanced solubility, stability, and sustained release. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2220-2231. [PMID: 34611905 DOI: 10.1002/jsfa.11560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lotus seed protein (LSP) was extracted from lotus seed and used to encapsulate curcumin with or without complexing with pectin. The physicochemical properties of LSP-based microcapsules, including solubility, stability, and in vitro sustained release, were determined. The mechanism of interaction between curcumin, LSP, and pectin was revealed. RESULTS The encapsulation efficiency of curcumin was found to depend on LSP concentration and was highest (86.32%, w/w) at 50 mg mL-1 . The curcumin in curcumin-LSP and curcumin-LSP-pectin powder particles achieved a solubility of 75.15% and 81.39%, respectively, which was a remarkable enhancement. The microencapsulation with LSP and LSP-pectin matrix showed a significant improvement in the antioxidant activity, photostability, thermostability, and storage stability of free curcumin. The microencapsulated curcumin showed sustained control release at the gastric stage and burst-type release in the subsequent intestinal stage, presenting cumulative release rates of 64.3% and 72.4% from curcumin-LSP and curcumin-LSP-pectin particles after gastrointestinal digestion. The LSP-pectin complex produced microcapsules with higher solubility, smaller particle size, enhanced physicochemical stability, and increased bioaccessibility. Fourier transform infrared, circular dichroism spectra, and differential scanning calorimetry data indicated that the encapsulated curcumin interacted with LSP and pectin mainly through hydrogen bonding, hydrophobic, and electrostatic interactions. CONCLUSION This work shows that LSP can be an alternative encapsulant for the delivery of hydrophobic nutraceuticals with enhanced solubility, stability, and sustained release. The results may contribute to the design of novel food-grade delivery systems based on LSP vehicles, thereby broadening the applications of LSP in the fields of functional food. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Li Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
Chen L, Yue B, Liu Z, Luo Y, Ni L, Zhou Z, Ge X. Study on the Preparation, Characterization, and Stability of Freeze-Dried Curcumin-Loaded Cochleates. Foods 2022; 11:foods11050710. [PMID: 35267344 PMCID: PMC8908975 DOI: 10.3390/foods11050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin (CUR), a polyphenolic substance extracted from plants, has extensive pharmacological activities. However, CUR is difficult to be absorbed in the body due to its poor stability and low solubility. Studies have found that cochleates can be used as a new delivery system to encapsulate bioactive agents for the purpose of improving its stability and bioavailability. In this study, thin-film dispersion and trapping methods were used to prepare curcumin-loaded cochleates (CUR-Cochs). Then CUR-Cochs were characterized and the encapsulation efficiency was determined by HPLC. In addition, the freeze-drying process of CUR-Cochs was studied and related characterization was performed. CCK-8 assay was used to detect the cytotoxicity of cochleates carrier. Additionally, H2O2-induced cellular oxidative damage model were used to evaluate its antioxidant capacity. The results showed that the structure of CUR-Cochs was a spiral cylinder with an average particle size of 463.8 nm and zeta potential of −15.47 mV. The encapsulation efficiency was the highest (83.66 ± 0.8)% with 1:50 CUR-to-lipid mass ratio. In vitro results showed that cochleates had negligible cytotoxicity and owned antioxidant capacity, which provided the possibility for their applications in food and medicine. In general, the method herein might be a promising method to encapsulate CUR for further use as a bioactive agent in functional foods.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.C.); (Z.L.); (Y.L.)
| | - Bowen Yue
- Department of Pharmacy, Medical College of China Three Gorges University, Yichang 443002, China; (B.Y.); (L.N.)
| | - Zhiming Liu
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.C.); (Z.L.); (Y.L.)
| | - Yali Luo
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.C.); (Z.L.); (Y.L.)
| | - Lu Ni
- Department of Pharmacy, Medical College of China Three Gorges University, Yichang 443002, China; (B.Y.); (L.N.)
| | - Zhiyong Zhou
- Department of Pharmacy, Medical College of China Three Gorges University, Yichang 443002, China; (B.Y.); (L.N.)
- Correspondence: (Z.Z.); (X.G.); Tel.: +86-0717-639-6818 (Z.Z.); +86-025-8542-7844 (X.G.)
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.C.); (Z.L.); (Y.L.)
- Correspondence: (Z.Z.); (X.G.); Tel.: +86-0717-639-6818 (Z.Z.); +86-025-8542-7844 (X.G.)
| |
Collapse
|
24
|
Dib T, Pan H, Chen S. Recent Advances in Pectin-based Nanoencapsulation for Enhancing the Bioavailability of Bioactive Compounds: Curcumin Oral Bioavailability. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2012796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thamila Dib
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
25
|
Formulation of gold nanoparticles with hibiscus and curcumin extracts induced anti-cancer activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Kour P, Afzal S, Gani A, Zargar MI, Nabi Tak U, Rashid S, Dar AA. Effect of nanoemulsion-loaded hybrid biopolymeric hydrogel beads on the release kinetics, antioxidant potential and antibacterial activity of encapsulated curcumin. Food Chem 2021; 376:131925. [PMID: 34973641 DOI: 10.1016/j.foodchem.2021.131925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/16/2022]
Abstract
Nanoemulsion encapsulated in the hydrogel beads are important entrants for loading hydrophobic active ingredients for enhancing their bioavailability and biological activities relevant in the pharmaceutical, food and cosmetic industries. Herein, we report the formulation of curcumin-loaded nanoemulsion encapsulated in ionotropic hybrid hydrogel beads of alginate, chitosan, gelatin and polyethylene oxide for effective delivery of curcumin. The release behaviour in simulated gastric and intestinal fluids (SGF and SIF) at 37 °C showed faster release in SGF which could be explained on the basis of mesh size, the extent of hydration and the complexation of the curcumin with the Ca2+ ions present within the hydrogel network. The free radical scavenging and antibacterial activities of the released curcumin in SGF were significantly greater than in SIF. This study shows promises of such hybrid systems, ignored so far, for proper encapsulation, protection and delivery of curcumin for the development of functional foods and pharmaceutics. The high structural stability of these nanoemulsion carriers and their effective delivery of curcumin provide a novel and tailored formulation out of existing polymers with plethora of advantages for oral drug delivery. Moreover, this study opens new door for different possibilities to improve the physicochemical characteristics and delivery of bioactive molecules like curcumin.
Collapse
Affiliation(s)
- Pawandeep Kour
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Saima Afzal
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Umar Nabi Tak
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Showkat Rashid
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India.
| |
Collapse
|
27
|
Vimal A, Siddiqui MH, Verma A, Kumar A. Degradation product of curcumin restrain Salmonella typhimurium virulent protein L-asparaginase. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021:jcim-2021-0172. [PMID: 34860475 DOI: 10.1515/jcim-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Salmonella typhimurium is a pathogen responsible for causing a wide range of infectious diseases. The emergence of multi-drug resistance (MDR) in this microbe is a big challenge. L-asparaginase (less explored drug target) is selected as a drug target because it is actively involved in the virulence mechanism. To block this virulent enzyme, curcumin that is traditionally renowned for its medicinal properties was examined. However, its pharmacological behavior and targeting property is less understood because of its poor bioavailability. Therefore, the present work explores the antimicrobial effect of both curcumin and its degradation product against the MDR pathogen. METHODS Molecular docking studies were carried out to evaluate the inhibitory effect of curcumin and its degradation product against the L-asparaginase enzyme using Schrodinger Maestro interface tools. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile of all the test ligands was also performed. RESULTS The docking score of curcumin was -5.465 kcal/mol while its degradation product curcumin glucuronide has the lowest i.e., -6.240 kcal/mol. All the test ligands showed better or comparable docking scores with respect to control (Ciprofloxacin). Arg 142 and Asn 84 amino acid residues of L-asparaginase were found to be interacting with test ligands inside the binding pocket of the target protein. ADME/toxicology study also indicated the potency of curcumin/curcumin degradation products as a potent inhibitor. CONCLUSIONS It was found that both curcumin and its degradation products have the potential to inhibit Salmonella. This information could be valuable for futuristic drug candidate development against this pathogen and could be a potential lead for mitigation of MDR.
Collapse
Affiliation(s)
- Archana Vimal
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
28
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
29
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
30
|
Shaikh SB, Najar MA, Prabhu A, Rex DAB, Chanderasekaran J, Behera SK, Modi PK, Prasad TSK, Bhandary YP. The unique molecular targets associated antioxidant and antifibrotic activity of curcumin in in vitro model of acute lung injury: A proteomic approach. Biofactors 2021; 47:627-644. [PMID: 33864298 DOI: 10.1002/biof.1732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
Bleomycin (BLM) injury is associated with the severity of acute lung injury (ALI) leading to fibrosis, a high-morbidity, and high-mortality respiratory disease of unknown etiology. BLM-induced ALI is marked by the activation of a potent fibrogenic cytokine transcription growth factor beta-1 (TGFβ-1), which is considered a critical cytokine in the progression of alveolar injury. Previously, our work demonstrated that a diet-derived compound curcumin (diferuloylmethane), represents its antioxidative and antifibrotic application in TGF-β1-mediated BLM-induced alveolar basal epithelial cells. However, curcumin-specific protein targets, as well as its mechanism using mass spectrometry-based proteomic approach, remain elusive. To elucidate the underlying mechanism, a quantitative proteomics approach and bioinformatics analysis were employed to identify the protein targets of curcumin in BLM or TGF-β1-treated cells. With subsequent in vitro experiments, curcumin-related pathways and cellular processes were predicted and validated. The current study discusses two separate proteomics experiments using BLM and TGF-β1-treated cells with the proteomics approach, various unique target proteins were identified, and proteomic analysis revealed that curcumin reversed the expressions of unique proteins like DNA topoisomerase 2-alpha (TOP2A), kinesin-like protein (KIF11), centromere protein F (CENPF), and so on BLM or TGF-β1 injury. For the first time, the current study reveals that curcumin restores TGF-β1 induced peroxisomes like PEX-13, PEX-14, PEX-19, and ACOX1. This was verified by subsequent in vitro assays. This study generated molecular evidence to deepen our understanding of the therapeutic role of curcumin at the proteomic level and may be useful to identify molecular targets for future drug discovery.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | | | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | | | | |
Collapse
|
31
|
Jantawong C, Priprem A, Intuyod K, Pairojkul C, Pinlaor P, Waraasawapati S, Mongkon I, Chamgramol Y, Pinlaor S. Curcumin-loaded nanocomplexes: Acute and chronic toxicity studies in mice and hamsters. Toxicol Rep 2021; 8:1346-1357. [PMID: 34277359 PMCID: PMC8267493 DOI: 10.1016/j.toxrep.2021.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
We recently developed a modified solid dispersion of curcumin-loaded nanocomplexes (CNCs) in gums which promoted the prolonged and sustained release of curcumin. However, its safety assessment has not yet been investigated. Here, acute and chronic toxicities of CNCs were assayed using mice and hamsters. CNCs were orally administered to the animals. Doses of CNCs used for acute toxicity testing were 0.1, 1.1, 11.0 g/kg body weight for mice and 0.2, 2.1 and 21.4 g/kg body weight for hamsters. Doses of CNCs for chronic toxicity testing were 0.09, 0.27, 0.8 g/kg body weight/day for mice and 0.18, 0.54 and 1.61 g/kg body weight/day for hamsters. This regimen was followed daily for 6 months. Low and medium doses of CNCs did not induce any side effects in acute and chronic toxicity tests in either animal species. However, in acute toxicity testing, the organ-weight to body-weight ratio of spleen was significantly increased in mice treated with 11 g/kg body weight along with elevated levels of some biochemical parameters. There was a significant increase in organ-weight to body-weight ratios of stomach, liver and heart in hamsters treated with 21.4 g/kg body weight, but no elevated levels of biochemical parameters. Oral LD50 of CNCs in mice and hamsters were 8.9 and 16.8 g/kg body weight (equivalent to 2.5 and 4.7 g curcumin/kg body weight), respectively. Daily CNCs high-dose treatment for 6 months significantly increased organ-weight to body-weight ratios of stomach and intestine in mice and of lung and heart in hamsters. Elevated levels of glucose, total protein, ALT, AST and globulin in mice, and increased levels of AST, but decrease in cholesterol, in hamsters were concurrently observed with inflammation in liver and lung. These abnormalities were resolved within 28 days after cessation of treatment. The no-observed-adverse-effect level of CNCs was determined at 0.27 and 0.54 g/kg body weight/day in mice and hamsters. In conclusion, toxicity of high-dose CNCs treatment was graded as very low, possibly due to the components of the nanocomplex.
Collapse
Affiliation(s)
- Chanakan Jantawong
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Aroonsri Priprem
- Faculty of Pharmacy, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Mahasarakham, 44150, Thailand
| | - Kitti Intuyod
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Porntip Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Waraasawapati
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Itnarin Mongkon
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yaovalux Chamgramol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
32
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
33
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
34
|
Yu YB, Wu MY, Wang C, Wang ZW, Chen TT, Yan JK. Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Zhang H, Liu X, Xu T, Xu K, Du B, Li Y. Biodegradable reduction and pH dual-sensitive polymer micelles based on poly(2-ethyl-2-oxazoline) for efficient delivery of curcumin. RSC Adv 2020; 10:25435-25445. [PMID: 35518633 PMCID: PMC9055264 DOI: 10.1039/d0ra02779k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
A series of disulfide-linked amphiphilic polymers polyoxaline-SS-poly(lactide) (PEtOx-SS-PLA) were prepared and self-assembled into nano-micelles in water.
Collapse
Affiliation(s)
- Hena Zhang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Xiaojun Liu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Ting Xu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Kang Xu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Baixiang Du
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Yuling Li
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| |
Collapse
|
36
|
Bonaccorsi PM, Labbozzetta M, Barattucci A, Salerno TMG, Poma P, Notarbartolo M. Synthesis of Curcumin Derivatives and Analysis of Their Antitumor Effects in Triple Negative Breast Cancer (TNBC) Cell Lines. Pharmaceuticals (Basel) 2019; 12:E161. [PMID: 31717764 PMCID: PMC6958375 DOI: 10.3390/ph12040161] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
We analyzed antitumor effects of a series of curcumin analogues. Some of them were obtained by reaction of substitution involving the two phenolic OH groups of curcumin while the analogues with a substituent at C-4 was prepared following an original procedure that regards the condensation of benzenesulfenic acid onto the nucleophilic central carbon of the curcumin skeleton. We analyzed cytotoxic effects of such derivatives on two TNBC (triple negative breast cancer) cell lines, SUM 149 and MDA-MB-231, but only three of them showed an IC50 in a lower micromolar range with respect to curcumin. We also focused on these three derivatives that in both cell lines exhibited a higher or at least equivalent pro-apoptotic effect than curcumin. The analysis of molecular mechanisms of action of the curcumin derivatives under study has highlighted that they decreased NF-κB transcriptional factor activity, and consequently the expression of some NF-κB targets. Our data confirmed once again that curcumin may represent a very good lead compound to design analogues with higher antitumor capacities and able to overcome drug resistance with respect to conventional ones, even in tumors difficult to treat as TNBC.
Collapse
Affiliation(s)
- Paola Maria Bonaccorsi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (P.M.B.); (A.B.); (T.M.G.S.)
| | - Manuela Labbozzetta
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90133 Palermo, Italy; (M.L.); (M.N.)
| | - Anna Barattucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (P.M.B.); (A.B.); (T.M.G.S.)
| | - Tania Maria Grazia Salerno
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (P.M.B.); (A.B.); (T.M.G.S.)
| | - Paola Poma
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90133 Palermo, Italy; (M.L.); (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90133 Palermo, Italy; (M.L.); (M.N.)
| |
Collapse
|