1
|
Das A, Sonar S, Kalele K, Subramaniyan V. Fruit exosomes: a sustainable green cancer therapeutic. SUSTAINABLE FOOD TECHNOLOGY 2025. [DOI: 10.1039/d4fb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2024]
Abstract
Fruit exosomes are the source of natural cancer therapeutic tools.
Collapse
Affiliation(s)
- Asmit Das
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ketki Kalele
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, Kulkarni M, Shen B, Singla RK. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156087. [PMID: 39388922 DOI: 10.1016/j.phymed.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plant-derived exosomes (PDEs), are nanoscale vesicles secreted by multivesicular bodies, play pivotal roles in critical biological processes, including gene regulation, cell communication, and immune defense against pathogens. Recognized for their potential health-promoting properties, PDEs are emerging as innovative components in functional nutrition, poised to enhance dietary health benefits. PURPOSE To describe the efficacy of PDEs in nanoform and their application as precision therapy in many disorders. STUDY DESIGN The design of this review was carried out in PICO format using randomized clinical trials and research articles based on in vivo and in vitro studies. METHODS All the relevant clinical and research studies conducted on plant-derived nanovesicle application and efficacy were included, as retrieved from PubMed and Cochrane, after using specific search terms. This review was performed to determine PDEs' efficacy as nanomedicine and precision therapy. Sub-group analysis and primary data were included to determine the relationship with PDEs. RESULT PDEs are extracted from plant materials using sophisticated techniques like precipitation, size exclusion, immunoaffinity capture, and ultracentrifugation, encapsulating vital molecules such as lipids, proteins, and predominantly microRNAs. Although their nutritional impact may be minimal in small quantities, the broader application of PDEs in biomedicine, particularly as vehicles for drug delivery, underscores their significance. They offer a promising strategy to improve the bioavailability and efficacy of therapeutic agents carrying nano-bioactive substances that exhibit anti-inflammatory, antioxidant, cardioprotective, and anti-cancer activities. CONCLUSION PDEs enhance the therapeutic potency of plant-derived phytochemicals, supporting their use in disease prevention and therapy. This comprehensive review explores the multifaceted aspects of PDEs, including their isolation methods, biochemical composition, health implications, and potential to advance medical and nutritional interventions.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M College of Pharmacy, Ahmedabad 380009, Gujrat, India.
| | - Dixa A Vaghela
- Pharmacy section, L.M College of Pharmacy Ahmedabad 380009, Gujrat, India
| | - Rajashri Bezbaruah
- Department of Pharmacology, Dibrugarh University, Dibrugarh 786004, Assam
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India
| | - Mangesh Kulkarni
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India; Department of Pharmaceutics, Gandhinagar Institute of Pharmacy, Gandhinagar University, Moti Bhoyan, Khatraj-Kalol Road 382721, Gujarat, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
3
|
Li Y, Wang Y, Zhao H, Pan Q, Chen G. Engineering Strategies of Plant-Derived Exosome-Like Nanovesicles: Current Knowledge and Future Perspectives. Int J Nanomedicine 2024; 19:12793-12815. [PMID: 39640047 PMCID: PMC11618857 DOI: 10.2147/ijn.s496664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Plant-derived exosome-like nanovesicles (PELNs) from edible plants, isolated by ultracentrifugation, size exclusion chromatography or other methods, were proved to contain a variety of biologically active and therapeutically specific components. Recently, investigations in the field of PELN-based biomedicine have been conducted, which positioned those nanovesicles as promising tools for prevention and treatment of several diseases, with their natural origin potentially offering superior biocompatibility and bioavailability. However, the inadequate targeting and limited therapeutic effects constrain the utility and clinical translation of PELNs. Thus, strategies aiming at bridging the gap by engineering natural PELNs have been of great interest. Those approaches include membrane hybridization, physical and chemical surface functionalization and encapsulation of therapeutic payloads. Herein, we provide a comprehensive overview of the biogenesis and composition, isolation and purification methods and characterization of PELNs, as well as their therapeutic functions. Current knowledge on the construction strategies and biomedical application of engineered PELNs were reviewed. Additionally, future directions and perspectives in this field were discussed in order to further enrich and expand the prospects for the application of engineered PELNs.
Collapse
Affiliation(s)
- Yuhan Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hongrui Zhao
- Intensive Care Medicine Department, Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Qi Pan
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Guihao Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Ding L, Chang C, Liang M, Dong K, Li F. Plant‐Derived Extracellular Vesicles as Potential Emerging Tools for Cancer Therapeutics. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 01/03/2025]
Abstract
AbstractExtracellular vesicles (EVs) are membranous structures secreted by cells that play important roles in intercellular communication and material transport. Due to its excellent biocompatibility, lipophilicity, and homing properties, EVs have been used as a new generation of drug delivery systems for the diagnosis and treatment of tumors. Despite the potential clinical benefits of animal‐derived extracellular vesicles (AEVs), their large‐scale production remains sluggish due to the exorbitant cost of cell culture, challenging quality control measures, and limited production capabilities. This constraint significantly hinders their widespread clinical application. Plant‐derived extracellular vesicles (PEVs) share similar functionalities with AEVs, yet they hold several advantages including a wide variety of source materials, cost‐effectiveness, ease of preparation, enhanced safety, more stable physicochemical properties, and notable efficacy. These merits position PEVs as promising contenders with broad potential in the biomedical sector. This review will elucidate the advantages of PEVs, delineating their therapeutic mechanisms in cancer treatment, and explore the prospective applications of engineered PEVs as targeted delivery nano‐system for drugs, microRNAs, small interfering RNAs, and beyond. The aim is to heighten researchers’ focus on PEVs and expedite the progression from fundamental research to the transformation of groundbreaking discoveries.
Collapse
Affiliation(s)
- Lin Ding
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Chih‐Jung Chang
- School of Medicine and Medical Research Center Xiamen Chang Gung Hospital Hua Qiao University Xiamen Fujian 362017 China
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Linkou Taoyuan 244330 Taiwan
| | - Min‐Li Liang
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Kang‐Mei Dong
- Xiamen Lifeint Technology Co., Ltd. Fujian 361000 China
| | - Fu‐Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| |
Collapse
|
5
|
Xie F, Qiu J, Sun C, Feng L, Jun Y, Luo C, Guo X, Zhang B, Zhou Y, Wang Y, Zhang L, Wang Q. Development of a Specific Aptamer-Modified Nano-System to Treat Esophageal Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309084. [PMID: 38704694 PMCID: PMC11267304 DOI: 10.1002/advs.202309084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/23/2024] [Indexed: 05/07/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent gastrointestinal cancer characterized by high mortality and an unfavorable prognosis. While combination therapies involving surgery, chemotherapy, and radiation therapy are advancing, targeted therapy for ESCC remains underdeveloped. As a result, the overall five-year survival rate for ESCC is still below 20%. Herein, ESCC-specific DNA aptamers and an innovative aptamer-modified nano-system is introduced for targeted drug and gene delivery to effectively inhibit ESCC. The EA1 ssDNA aptamer, which binds robustly to ESCC cells with high specificity and affinity, is identified using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). An EA1-modified nano-system is developed using a natural egg yolk lipid nanovector (EA1-EYLNs-PTX/siEFNA1) that concurrently loads paclitaxel (PTX) and a small interfering RNA of Ephrin A1 (EFNA1). This combination counters ESCC's proliferation, migration, invasion, and lung metastasis. Notably, EFNA1 is overexpressed in ESCC tumors with lung metastasis and has an inverse correlation with ESCC patient prognosis. The EA1-EYLNs-PTX/siEFNA1 nano-system offers effective drug delivery and tumor targeting, resulting in significantly improved therapeutic efficacy against ESCC tumors. These insights suggest that aptamer-modified nano-systems can deliver drugs and genes with superior tumor-targeting, potentially revolutionizing targeted therapy in ESCC.
Collapse
Affiliation(s)
- Fei Xie
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Jinrong Qiu
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Congyong Sun
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Lulu Feng
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Yali Jun
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
- The Comprehensive Cancer Center, Department of Clinical Oncology, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Chao Luo
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Xiamei Guo
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Bowei Zhang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Yu Zhou
- The Comprehensive Cancer Center, Department of Clinical Oncology, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Yuting Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Li Zhang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Qilong Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| |
Collapse
|
6
|
Corvigno S, Liu Y, Bayraktar E, Stur E, Bayram NN, Ahumada AL, Nagaraju S, Rodriguez-Aguayo C, Chen H, Vu TC, Wen Y, Liang H, Zhao L, Lee S, Lopez-Berestein G, Sood AK. Enhanced plant-derived vesicles for nucleotide delivery for cancer therapy. NPJ Precis Oncol 2024; 8:86. [PMID: 38582949 PMCID: PMC10998889 DOI: 10.1038/s41698-024-00556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/20/2024] [Indexed: 04/08/2024] Open
Abstract
Small RNAs (microRNAs [miRNAs] or small interfering RNAs [siRNAs]) are effective tools for cancer therapy, but many of the existing carriers for their delivery are limited by low bioavailability, insufficient loading, impaired transport across biological barriers, and low delivery into the tumor microenvironment. Extracellular vesicle (EV)-based communication in mammalian and plant systems is important for many physiological and pathological processes, and EVs show promise as carriers for RNA interference molecules. However, some fundamental issues limit their use, such as insufficient cargo loading and low potential for scaling production. Plant-derived vesicles (PDVs) are membrane-coated vesicles released in the apoplastic fluid of plants that contain biomolecules that play a role in several biological mechanisms. Here, we developed an alternative approach to deliver miRNA for cancer therapy using PDVs. We isolated vesicles from watermelon and formulated a hybrid, exosomal, polymeric system in which PDVs were combined with a dendrimer bound to miRNA146 mimic. Third generation PAMAM was chosen due to its high branching structure and versatility for loading molecules of interest. We performed several in vivo experiments to demonstrate the therapeutic efficacy of our compound and explored in vitro biological mechanisms underlying the anti-tumor effects of miRNA146, which are mostly related to its anti-angiogenic activity.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Liu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nazende Nur Bayram
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Adrian Lankenau Ahumada
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Supriya Nagaraju
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hu Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Thanh Chung Vu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Trentini M, Zanolla I, Tiengo E, Zanotti F, Sommella E, Merciai F, Campiglia P, Licastro D, Degasperi M, Lovatti L, Bonora M, Danese A, Pinton P, Zavan B. Link between organic nanovescicles from vegetable kingdom and human cell physiology: intracellular calcium signalling. J Nanobiotechnology 2024; 22:68. [PMID: 38369472 PMCID: PMC10875884 DOI: 10.1186/s12951-024-02340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Plant-derived nanovesicles (PDNVs) are a novelty in medical and agrifood environments, with several studies exploring their functions and potential applications. Among fruits, apples (sp. Malus domestica) have great potential as PDNVs source, given their widespread consumption, substantial waste production, and recognized health benefits. Notably, apple-derived nanovesicles (ADNVs) can interact with human cell lines, triggering anti-inflammatory and antioxidant responses. This work is dedicated to the comprehensive biochemical characterization of apple-derived nanovesicles (ADNVs) through proteomic and lipidomic analysis, and small RNAs sequencing. This research also aims to shed light on the underlying mechanism of action (MOA) when ADNVs interface with human cells, through observation of intracellular calcium signalling in human fibroblasts, and to tackles differences in ADNVs content when isolated from fruits derived from integrated and organic production methods cultivars. RESULTS The ADNVs fraction is mainly composed of exocyst-positive organelles (EXPOs) and MVB-derived exosomes, identified through size and molecular markers (Exo70 and TET-3-like proteins). ADNVs' protein cargo is heterogeneous and exhibits a diverse array of functions, especially in plant's protection (favouring ABA stress-induced signalling, pathogen resistance and Reactive Oxygen Species (ROS) metabolism). Noteworthy plant miRNAs also contribute to phytoprotection. In relation with human cells lines, ADNVs elicit spikes of intracellular Ca2+ levels, utilizing the cation as second messenger, and produce an antioxidant effect. Lastly, organic samples yield a substantial increase in ADNV production and are particularly enriched in bioactive lysophospholipids. CONCLUSIONS We have conclusively demonstrated that ADNVs confer an antioxidant effect upon human cells, through the initiation of a molecular pathway triggered by Ca2+ signalling. Within ADNVs, a plethora of bioactive proteins, small RNAs, and lipids have been identified, each possessing well-established functions within the realm of plant biology. While ADNVs predominantly function in plants, to safeguard against pathogenic agents and abiotic stressors, it is noteworthy that proteins with antioxidant power might act as antioxidants within human cells.
Collapse
Affiliation(s)
- Martina Trentini
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ilaria Zanolla
- Departiment of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Tiengo
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Federica Zanotti
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | | | | | - Luca Lovatti
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Massimo Bonora
- Departiment of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Departiment of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Departiment of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
8
|
Wang Y, Wu Y, Shen S, Liu Y, Xia Y, Xia H, Xie Z, Xu Y. Engineered plant extracellular vesicles for natural delivery across physiological barriers. Food Funct 2024; 15:1737-1757. [PMID: 38284549 DOI: 10.1039/d3fo03503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles that participate in the information transfer of proteins, nucleic acids, and lipids between cells, thereby playing a role in the treatment of diseases and the delivery of nutrients. In recent years, plant-derived EVs (PDEVs) containing bioactive compounds have attracted increasing interest due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDEVs have been used as cargo carriers to achieve various functions through engineering modification techniques. This review focuses on the biogenesis, isolation, and identification of PDEVs. We discuss the surface functionalization of PDEVs to enhance therapeutic efficacy, thereby improving their efficiency as a next-generation drug delivery vehicle and their feasibility to treat diseases across the physiological barriers, while critically analyzing the current challenges and opportunities.
Collapse
Affiliation(s)
- Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Yinxiang Xu
- Zhaoke (Hefei) Pharmaceutical Co., Ltd, Hefei 230088, China
| |
Collapse
|
9
|
Chintapula U, Oh D, Perez C, Davis S, Ko J. Anti-cancer bioactivity of sweet basil leaf derived extracellular vesicles on pancreatic cancer cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e142. [PMID: 38939903 PMCID: PMC11080924 DOI: 10.1002/jex2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 06/29/2024]
Abstract
Most living organisms secrete tiny lipid bilayer particles encapsulating various biomolecular entities, including nucleic acids and proteins. These secreted extracellular vesicles (EVs) are shown to aid in communication between cells and their environment. EVs are mainly involved in the signalling and manipulation of physiological processes. Plant EVs display similar functional activity as seen in mammalian EVs. Medicinal plants have many bioactive constituents with potential applications in cancer treatment. Particularly, Basil (Ocimum basilicum), has wide therapeutic properties including anti-inflammatory, anti-cancer, and anti-infection, among others. In this study, we focused on using EVs purified from Apoplast Washing Fluid (AWF) of Basil plant leaves as a biological therapeutic agent against cancer. Characterization of Basil EVs revealed a size range of 100-250 nm, which were later assessed for their cell uptake and apoptosis inducing abilities in pancreatic cancer cells. Basil plant EVs (BasEVs) showed a significant cytotoxic effect on pancreatic cancer cell line MIA PaCa-2 at a concentration of 80 and 160 μg/mL in cell viability, as well as clonogenic assays. Similarly, RT-PCR and western blot analysis has shown up regulation in apoptotic gene and protein expression of Bax, respectively, in BasEV treatment groups compared to untreated controls of MIA PaCa-2. Overall, our results suggest that EVs from basil plants have potent anti-cancer effects in pancreatic cancer cells and can serve as a drug delivery system, demanding an investigation into the therapeutic potential of other medicinal plant EVs.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniel Oh
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Cristina Perez
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sachin Davis
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
10
|
Zhao Y, Tan H, Zhang J, Pan B, Wang N, Chen T, Shi Y, Wang Z. Plant-Derived Vesicles: A New Era for Anti-Cancer Drug Delivery and Cancer Treatment. Int J Nanomedicine 2023; 18:6847-6868. [PMID: 38026523 PMCID: PMC10664809 DOI: 10.2147/ijn.s432279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Lipid-structured vesicles have been applied for drug delivery system for over 50 years. Based on their origin, lipid-structured vesicles are divided into two main categories, namely synthetic lipid vesicles (SLNVEs) and vesicles of mammalian origin (MDVEs). Although SLNVEs can stably transport anti-cancer drugs, their biocompatibility is poor and degradation of exogenous substances is a potential risk. Unlike SLNVEs, MDVEs have excellent biocompatibility but are limited by a lack of stability and a risk of contamination by dangerous pathogens from donor cells. Since the first discovery of plant-derived vesicles (PDVEs) in carrot cell supernatants in 1967, emerging evidence has shown that PDVEs integrate the advantages of both SLNVEs and MDVEs. Notably, 55 years of dedicated research has indicated that PDVEs are an ideal candidate vesicle for drug preparation, transport, and disease treatment. The current review systematically focuses on the role of PDVEs in cancer therapy and in particular compares the properties of PDVEs with those of conventional lipid vesicles, summarizes the preparation methods and quality control of PDVEs, and discusses the application of PDVEs in delivering anti-cancer drugs and their underlying molecular mechanisms for cancer therapy. Finally, the challenges and future perspectives of PDVEs for the development of novel therapeutic strategies against cancer are discussed.
Collapse
Affiliation(s)
- Yuying Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hanxu Tan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yafei Shi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
11
|
Cao M, Diao N, Cai X, Chen X, Xiao Y, Guo C, Chen D, Zhang X. Plant exosome nanovesicles (PENs): green delivery platforms. MATERIALS HORIZONS 2023; 10:3879-3894. [PMID: 37671650 DOI: 10.1039/d3mh01030a] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Natural plants have been attracting increasing attention in biomedical research due to their numerous benefits. Plant exosome-derived vesicles, some of the plant's components, are small nanoscale vesicles secreted by plant cells. These vesicles are rich in bioactive substances and play significant roles in intercellular communication, information transfer, and maintaining homeostasis in organisms. They also hold promise for treating diseases, and their vesicular structures make them suitable carriers for drug delivery, with large-scale production feasible. Therefore, this paper aims to provide an overview of nanovesicles from different plant sources and their extraction methods. We also outline the biological activities of nanovesicles, including their anti-inflammatory, anti-viral, and anti-tumor properties, and systematically introduce their applications in drug delivery. These applications include transdermal delivery, targeted drug delivery, gene delivery, and their potential use in the modern food industry. This review provides new ideas and methods for future research on plant exosomes, including their empowerment by artificial intelligence and gene editing, as well as their potential application in the biomedicine, food, and agriculture industries.
Collapse
Affiliation(s)
- Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, P. R. China.
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, P. R. China.
| | - Xiaolu Cai
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, P. R. China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, P. R. China.
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Chen X, Ji S, Yan Y, Lin S, He L, Huang X, Chang L, Zheng D, Lu Y. Engineered Plant-Derived Nanovesicles Facilitate Tumor Therapy: Natural Bioactivity Plus Drug Controlled Release Platform. Int J Nanomedicine 2023; 18:4779-4804. [PMID: 37635909 PMCID: PMC10460188 DOI: 10.2147/ijn.s413831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are the second-most common disease in the world, killing people at an alarming rate. As issues with drug resistance, lack of targeting, and severe side effects are revealed, there is a growing demand for precision-targeted drug delivery systems. Plant-derived nanovesicles (PDNVs), which arecomposed of proteins, lipids, RNA, and metabolites, are widely distributed and readily accessible. The potential for anti-proliferative, pro-apoptotic, and drug-resistant-reversing effects on tumor cells, as well as the ability to alter the tumor microenvironment (TME) by modulating tumor-specific immune cells, make PDNVs promising anti-tumor therapeutics. With a lipid bilayer structure that allows drug loading and a transmembrane capacity readily endocytosed by cells, PDNVs are also expected to become a new drug delivery platform. Exogenous modifications of PDNVs enhance their circulating stability, tumor targeting ability, high cell endocytosis rate, and controlled-release capacity. In this review, we summarize PDNVs' natural antitumor activity, as well as engineered PDNVs as efficient precision-targeted drug delivery tools that enhance therapeutic effects. Additionally, we discuss critical considerations related to the issues raised in this area, which will encourage researchers to improve PDNVs as better anti-tumor therapeutics for clinic applications.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Shuaiqi Ji
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Lin Chang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
13
|
Hillman T. The use of plant-derived exosome-like nanoparticles as a delivery system of CRISPR/Cas9-based therapeutics for editing long non-coding RNAs in cancer colon cells. Front Oncol 2023; 13:1194350. [PMID: 37388221 PMCID: PMC10301836 DOI: 10.3389/fonc.2023.1194350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023] Open
Abstract
Colon cancer is one of the leading causes of cancer in the United States. Colon cancer develops from the many gene mutations found in the genomes of colon cancer cells. Long non-coding RNAs (lncRNAs) can cause the development and progression of many cancers, including colon cancer. LncRNAs have been and could be corrected through the gene-editing technology of the clustered repeats of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system to reduce the proliferation of cancer cells in the colon. However, many current delivery systems for transporting CRISPR/Cas9-based therapeutics in vivo need more safety and efficiency. CRISPR/Cas9-based therapeutics require a safe and effective delivery system to more directly and specifically target cancer cells present in the colon. This review will present pertinent evidence for the increased efficiency and safety of using plant-derived exosome-like nanoparticles as nanocarriers for delivering CRISPR/Cas9-based therapeutics to target colon cancer cells directly.
Collapse
|
14
|
Tinnirello V, Rabienezhad Ganji N, De Marcos Lousa C, Alessandro R, Raimondo S. Exploiting the Opportunity to Use Plant-Derived Nanoparticles as Delivery Vehicles. PLANTS (BASEL, SWITZERLAND) 2023; 12:1207. [PMID: 36986896 PMCID: PMC10053153 DOI: 10.3390/plants12061207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The scientific community has become increasingly interested in plant-derived nanoparticles (PDNPs) over the past ten years. Given that they possess all the benefits of a drug carrier, including non-toxicity, low immunogenicity, and a lipid bilayer that protects its content, PDNPs are a viable model for the design of innovative delivery systems. In this review, a summary of the prerequisites for mammalian extracellular vesicles to serve as delivery vehicles will be given. After that, we will concentrate on providing a thorough overview of the studies investigating the interactions of plant-derived nanoparticles with mammalian systems as well as the loading strategies for encapsulating therapeutic molecules. Finally, the existing challenges in establishing PDNPs as reliable biological delivery systems will be emphasized.
Collapse
Affiliation(s)
- Vincenza Tinnirello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Nima Rabienezhad Ganji
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Carine De Marcos Lousa
- Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK
- Centre for Plant Sciences, University of Leeds, Leeds LS1 3HE, UK
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
15
|
Sarvarian P, Samadi P, Gholipour E, khodadadi M, Pourakbari R, Akbarzadelale P, Shamsasenjan K. Fisetin-loaded grape-derived nanoparticles improve anticancer efficacy in MOLT-4 cells. Biochem Biophys Res Commun 2023; 658:69-79. [PMID: 37027907 DOI: 10.1016/j.bbrc.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023]
Abstract
PURPOSE Fisetin (FIS) is a natural flavonoid with anti-proliferative and anti-apoptotic effects on different human cancer cell lines and can be considered a therapeutic agent for ALL treatment. However, FIS has little aqueous solubility and bioavailability, limiting its therapeutic applications. Thus, novel drug delivery systems are needed to improve solubility and bioavailability of FIS. Plant-derived nanoparticles (PDNPs) could be considered a great delivery system for FIS to the target tissues. In this study, we investigated the anti-proliferative and anti-apoptotic effect of free FIS and FIS-loaded Grape-derived Nanoparticles (GDN) FIS-GDN in MOLT-4 cells. MATERIALS/METHODS In this study, MOLT-4 cells were treated with increasing concentration of FIS and FIS-GDN and viability of cells were assessed by MTT assay. Additionally, cellular apoptosis rate and related genes expression were evaluated using flow cytometry and Real Time-PCR methods, respectively. RESULTS FIS and FIS-GDN decreased cells viability and increased cells apoptosis dose-dependently, but not time dependently. Treatment of MOLT-4 cells with increasing concentrations of FIS and FIS-GDN considerably increased the expression of caspase 3, 8 and 9 and Bax level, and also decreased the expression of Bcl-2. Results indicated an increased apoptosis after increased concentration of FIS and FIS-GDN at 24, 48 and 72 h. CONCLUSIONS Our data proposed that FIS and FIS-GDN can induce apoptosis and have antitumor properties in MOLT-4 cells. Furthermore, compared to FIS, FIS-GDN induced more apoptosis in these cells by increasing the solubility and efficiency of FIS. Additionally, GDNs increased FIS effectiveness in proliferation inhibition and apoptosis induction.
Collapse
|
16
|
Tan ZL, Li JF, Luo HM, Liu YY, Jin Y. Plant extracellular vesicles: A novel bioactive nanoparticle for tumor therapy. Front Pharmacol 2022; 13:1006299. [PMID: 36249740 PMCID: PMC9559701 DOI: 10.3389/fphar.2022.1006299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Extracellular vesicles are tiny lipid bilayer-enclosed membrane particles, including apoptotic bodies, micro vesicles, and exosomes. Organisms of all life forms can secrete extracellular vesicles into their surrounding environment, which serve as important communication tools between cells and between cells and the environment, and participate in a variety of physiological processes. According to new evidence, plant extracellular vesicles play an important role in the regulation of transboundary molecules with interacting organisms. In addition to carrying signaling molecules (nucleic acids, proteins, metabolic wastes, etc.) to mediate cellular communication, plant cells External vesicles themselves can also function as functional molecules in the cellular microenvironment across cell boundaries. This review introduces the source and extraction of plant extracellular vesicles, and attempts to clarify its anti-tumor mechanism by summarizing the current research on plant extracellular vesicles for disease treatment. We speculate that the continued development of plant extracellular vesicle-based therapeutic and drug delivery platforms will benefit their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Yang-Yang Liu
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
17
|
Dhanya CR, Mary AS, Madhavan M. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer. Chem Biol Drug Des 2022; 101:1162-1180. [PMID: 36099164 DOI: 10.1111/cbdd.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites. Aptamers offer several advantages as a vehicle for siRNA delivery, over other carriers such as antibodies. In this review, we discuss the progress made in the development and applications of aptamer-siRNA chimeras in HER2 targeting and gene silencing. A schematic workflow is also provided which will provide ample insight for all those researchers who are new to this field. Also, we think that a mechanistic understanding of the HER2 signaling pathway is crucial in designing extensive investigations aimed at the silencing of a wider array of genes. This review is expected to stimulate more research on aptamer-siRNA chimeras targeted against HER2 which might arm us with potential effective therapeutic interventions for the management of cancer.
Collapse
Affiliation(s)
- C R Dhanya
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, India
| | - Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
18
|
Anusha R, Priya S. Dietary Exosome-Like Nanoparticles: An Updated Review on Their Pharmacological and Drug Delivery Applications. Mol Nutr Food Res 2022; 66:e2200142. [PMID: 35593481 DOI: 10.1002/mnfr.202200142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Indexed: 11/10/2022]
Abstract
Exosomes are lipid bilayer membrane-bound extracellular vesicular structures (30-150 nm) mainly released by eukaryotic cells of animal origin. Exosome-like nanoparticles (ELNs) are the vesicular structures originating from plant sources with features similar to eukaryotic animal cell derived exosomes. ELNs derived from dietary sources (dietary ELNs) have exceptional pharmacological potential in alleviating many diseases and are good in maintaining intestinal health through the manipulation of the gut microbiome. The dietary ELNs being highly biocompatible find their application in targeted therapy as well. They are being established as promising drug delivery agents and can also be developed into dietary supplements. This review highlights the ELNs derived from various dietary sources, their diversity in molecular compositions, potential health benefits, and drug delivery applications. Few clinical trials are attempted with dietary ELNs which are also described in the review along with their properties that can be exploited for the food and pharma industries in the future.
Collapse
Affiliation(s)
- Rajitha Anusha
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
19
|
Sasaki D, Kusamori K, Takayama Y, Itakura S, Todo H, Nishikawa M. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity. Sci Rep 2021; 11:22818. [PMID: 34819568 PMCID: PMC8613273 DOI: 10.1038/s41598-021-02241-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Recent studies showed that plant-derived nanoparticles (NPs) can be easily produced in high yields and have potential applications as therapeutic agents or delivery carriers for bioactive molecules. In this study, we selected corn as it is inexpensive to grow and mass-produced globally. Super sweet corn was homogenized in water to obtain corn juice, which was then centrifuged, filtered through a 0.45-μm-pore size syringe filter, and ultracentrifuged to obtain NPs derived from corn, or corn-derived NPs (cNPs). cNPs obtained were approximately 80 nm in diameter and negatively charged (- 17 mV). cNPs were taken up by various types of cells, including colon26 tumor cells and RAW264.7 macrophage-like cells, with selective reduction of the proliferation of colon26 cells. Moreover, cNPs induced tumor necrosis factor-α release from RAW264.7 cells. cNPs and RAW264.7 in combination significantly suppressed the proliferation of colon26/fluc cells. Daily intratumoral injections of cNPs significantly suppressed the growth of subcutaneous colon26 tumors in mice, with no significant body weight loss. These results indicate excellent anti-tumor activity of cNPs.
Collapse
Affiliation(s)
- Daisuke Sasaki
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Kosuke Kusamori
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Yukiya Takayama
- grid.143643.70000 0001 0660 6861Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan
| | - Shoko Itakura
- grid.411949.00000 0004 1770 2033Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 Japan
| | - Hiroaki Todo
- grid.411949.00000 0004 1770 2033Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
20
|
Wang JY, Chen CM, Chen CF, Wu PK, Chen WM. Suppression of Estrogen Receptor Alpha Inhibits Cell Proliferation, Differentiation and Enhances the Chemosensitivity of P53-Positive U2OS Osteosarcoma Cell. Int J Mol Sci 2021; 22:ijms222011238. [PMID: 34681897 PMCID: PMC8540067 DOI: 10.3390/ijms222011238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
Osteosarcoma is a highly malignant musculoskeletal tumor that is commonly noticed in adolescent children, young children, and elderly adults. Due to advances in surgery, chemotherapy and imaging technology, survival rates have improved to 70–80%, but chemical treatments do not enhance patient survival; in addition, the survival rate after chemical treatments is still low. The most obvious clinical feature of osteosarcoma is new bone formation, which is called “sun burst”. Estrogen receptor alpha (ERα) is an essential feature of osteogenesis and regulates cell growth in various tumors, including osteosarcoma. In this study, we sought to investigate the role of ERα in osteosarcoma and to determine if ERα can be used as a target to facilitate the chemosensitivity of osteosarcoma to current treatments. The growth rate of each cell clone was assayed by MTT and trypan blue cell counting, and cell cycle analysis was conducted by flow cytometry. Osteogenic differentiation was induced by osteogenic induction medium and quantified by ARS staining. The effects of ERα on the chemoresponse of OS cells treated with doxorubicin were evaluated by colony formation assay. Mechanistic studies were conducted by examining the levels of proteins by Western blot. The role of ERα on OS prognosis was investigated by an immunohistochemical analysis of OS tissue array. The results showed an impaired growth rate and a decreased osteogenesis ability in the ERα-silenced P53(+) OS cell line U2OS, but not in P53(−) SAOS2 cells, compared with the parental cell line. Cotreatment with tamoxifen, an estrogen receptor inhibitor, increased the sensitivity to doxorubicin, which decreased the colony formation of P53(+) U2OS cells. Cell cycle arrest in the S phase was observed in P53(+) U2OS cells cotreated with low doses of doxorubicin and tamoxifen, while increased levels of apoptosis factors indicated cell death. Moreover, patients with ER−/P53(+) U2OS showed better chemoresponse rates (necrosis rate > 90%) and impaired tumor sizes, which were compatible with the findings of basic research. Taken together, ERα may be a potential target of the current treatments for osteosarcoma that can control tumor growth and improve chemosensitivity. In addition, the expression of ERα in osteosarcoma can be a prognostic factor to predict the response to chemotherapy.
Collapse
Affiliation(s)
- Jir-You Wang
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence:
| | - Wei-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| |
Collapse
|
21
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J Pharm Sci 2021; 17:53-69. [PMID: 35261644 PMCID: PMC8888139 DOI: 10.1016/j.ajps.2021.05.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnologies have been successfully applied to the treatment of various diseases. Plant-derived exosome-like nanoparticles (PENs) are expected to become effective therapeutic modalities for treating disease or in drug-delivery. PENs are minimally cytotoxic to healthy tissues, with which they show excellent biocompatibility, and are biased towards tumors by targeting specific tissues through special endocytosis mechanisms. Thus, the use of these PENs may expand the scope of drug therapies while reducing the off-target effects. In this review, we summarize the fundamental features and bioactivities of PENs extracted from the grape, grapefruit, ginger, lemon, and broccoli and discuss the applications of these particles as therapeutics and nanocarriers.
Collapse
|
23
|
Improving Breast Cancer Treatment Specificity Using Aptamers Obtained by 3D Cell-SELEX. Pharmaceuticals (Basel) 2021; 14:ph14040349. [PMID: 33918832 PMCID: PMC8068899 DOI: 10.3390/ph14040349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional spheroids of non-malignant MCF10A and malignant SKBR3 breast cells were used for subsequent 3D Cell-SELEX to generate aptamers for specific binding and treatment of breast cancer cells. Using 3D Cell-SELEX combined with Next-Generation Sequencing and bioinformatics, ten abundant aptamer families with specific structures were identified that selectively bind to SKBR3, and not to MCF10A cells. Multivalent aptamer polymers were synthesized by co-polymerization and analyzed for binding performance as well as therapeutic efficacy. Binding performance was determined by confocal fluorescence imaging and revealed specific binding and efficient internalization of aptamer polymers into SKBR3 spheroids. For therapeutic purposes, DNA sequences that intercalate the cytotoxic drug doxorubicin were co-polymerized into the aptamer polymers. Viability tests show that the drug-loaded polymers are specific and effective in killing SKBR3 breast cancer cells. Thus, the 3D-selected aptamers enhanced the specificity of doxorubicin against malignant over non-malignant breast cells. The innovative modular DNA aptamer platform based on 3D Cell SELEX and polymer multivalency holds great promise for diagnostics and treatment of breast cancer.
Collapse
|
24
|
Correa TDS, Bocca AL, Figueiredo F, Lima ECO, Almeida Santos MDFM, Lacava ZGM, Campos-da-Paz M. Anti-CEA tagged iron nanoparticles for targeting triple-negative breast cancer. Biomed Mater 2021; 16. [PMID: 33540396 DOI: 10.1088/1748-605x/abe359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/04/2021] [Indexed: 12/19/2022]
Abstract
Systemic therapy is generally required for breast cancer. However, treatment toxicity and side effects are a concern, especially for triple-negative breast cancer (TNBC), a subtype that usually develops resistance to chemotherapy. To overcome this issue, new nanoformulations capable of targeting cancer cells have been developed and alternative biomarkers have been explored as target molecules for TNBC management. In this study, we performed an in vivo assay in a murine orthotopic TNBC model to evaluate the targeting ability of anti-carcinoembryonic antigen (anti-CEA) loaded nanoparticles (labelled MFCEA), which had been previously synthetized by our research group. 4T1 cells were injected in the mammary gland of balb-c mice, and tumors were evaluated for CEA expression by immunohistochemistry. Tumor-bearing mice received targeted (MFCEA) and non-targeted (MF) nanoparticles intraperitoneally. Tumors were removed 1, 4, 15 and 24h after treatment, and Prussian blue iron staining was performed. Our results showed, as far as we know for the first time, that 4T1 induced tumors are CEA positive, and this opens up new prospects for treating TNBC. Furthermore, MFCEA nanoparticles were able to target malignant tissue and were retained in the tumor for longer than MF nanoparticles. The retention property of MFCEA, together with the absence of toxicity observed in the MTT assay, make these nanoparticles a promising device for management of CEA positive tumors and perhaps for TNBC. Nevertheless, further studies must be carried out to improve their performance and ensure safety for clinical studies.
Collapse
Affiliation(s)
- Thais da Silva Correa
- Federal University of São João del-Rei, Av. Sebastião Gonçalves Coelho 400 - Chanadour, Divinópolis, MG, 35501296, BRAZIL
| | - Anamelia L Bocca
- Biology Institute, University of Brasilia, Campus Universitário Darcy Ribeiro - Asa Norte, Brasilia, DF, 70910-900, BRAZIL
| | - Florêncio Figueiredo
- Medical School, University of Brasilia, Campus Universitário Darcy Ribeiro - Asa Norte, Brasilia, DF, 70910-900, BRAZIL
| | - Emilia C O Lima
- Federal University of Goias, Campus Samambaia Av. Goiás - Chácaras Califórnia, Goiania, GO, 74001970, BRAZIL
| | | | | | - Mariana Campos-da-Paz
- Federal University of São João del-Rei, Av. Sebastião Gonçalves Coelho 400 - Chanadour, Divinópolis , Minas Gerais, 35501296, BRAZIL
| |
Collapse
|
25
|
Nabi PN, Vahidfar N, Tohidkia MR, Hamidi AA, Omidi Y, Aghanejad A. Mucin-1 conjugated polyamidoamine-based nanoparticles for image-guided delivery of gefitinib to breast cancer. Int J Biol Macromol 2021; 174:185-197. [PMID: 33516855 DOI: 10.1016/j.ijbiomac.2021.01.170] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
PAMAM dendrimers (PAMs) are a group of polymeric macromolecules with distinctive physicochemical features, which can make them multifunctional theranostic nanoparticles (NPs). This study was designed to examine the impact of mucin-1 aptamer-conjugated NPs which were engineered using PAM for image-guided delivery of gefitinib (GEF) in the breast cancer cells/tumor. For this, PAMAM was conjugated with diethylenetriaminepentaacetic acid (DTPA) and modified with PEG2000 to prepare a multi-functionalized NPs. Subsequently, GEF was loaded onto the DTPA-PAM-PEG NPs, which were then armed with MUC-1 aptamer to form the DTPA-PAM-PEG/GEF@MUC-1 nanosystem. Finally, aptamer-conjugated NPs were radiolabeled by gallium-67 as an imaging agent to construct image-guided nanoplatforms. The prepared NPs were characterized by different techniques. The kinetic release models of gefitinib from radiolabeled NPs offer the sustained-release mechanism of the encapsulated drug for over 7 days. In vitro evaluation showed higher cytotoxicity and enhanced uptake of the mucin-grafted NPs in MCF-7 cells. Nuclear medicine imaging and in vivo investigations revealed significant accumulation of 67Ga-DTPA-PAM-PEG/GEF@MUC-1 in the tumor site of the animal models. These data suggest that the engineered NPs are a promising image-guided nanosystem for mucin-expressing breast cells/tumors with the assistance of nuclear medicine.
Collapse
Affiliation(s)
- Poorya Najjari Nabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Asghar Hamidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, FL, USA
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Zhao X, Zhang X, Qin M, Song Y, Zhang J, Xia X, Cui X, Gao K, Han Q. Determination of carbendazim by aptamer-based fluorescence resonance energy transfer (FRET). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1849250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xinyue Zhao
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiaomeng Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Mingwei Qin
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xueshan Xia
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiuming Cui
- Yunnan Research Center for Genuine Medicinal Materials, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Kai Gao
- College of Architecture and Urban Planning, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
27
|
Khalil MNA, Farghal HH, Farag MA. Outgoing and potential trends of composition, health benefits, juice production and waste management of the multi-faceted Grapefruit Citrus Χ paradisi: A comprehensive review for maximizing its value. Crit Rev Food Sci Nutr 2020; 62:935-956. [PMID: 33054326 DOI: 10.1080/10408398.2020.1830364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Grapefruit (GF) Citrus Χ paradisi Macfad (F. Rutaceae) is one of the major citrus fruits that encompass a myriad of bioactive chemicals and most unique among citrus fruits. Nevertheless, no study has yet to assess comprehensively its multitudinous constituents, health benefits, and valuable waste products. Hereto, the present review provides an updated comprehensive review on the different aspects of GF, its juice production, waste valorization, enhancement of its byproducts quality, and compared to other citrus fruits. Grapefruit uniqueness among other citrus fruits stands from its unique taste, flavor, and underlying complex chemical composition. Despite limonene abundance in peel oil and grapefruit juice (GFJ) aroma, nootkatone and sulfur compounds are the key determinants of its flavor, whereas flavanones contribute to its bitter taste and in conjunction with limonoids. Different postharvest treatments and juice processing are reviewed and in context to its influence on final product quality and or biological effects. Flavanones, furanocoumarins, and limonoids appear as the most prominent in GF drug interactions affecting its metabolism and or excretion. Valorization of GF peel is overviewed for its utilization as biosrobent, its oil in aromatherapy, limonene as antimicrobial or in cosmetics, fruit pectin for bioethanol production, or as biosorbent, and peel phenolics biotransformation. The present review capitalizes on all of the aforementioned aspects in GF and further explore novel aspects of its juice quality presenting the full potential of this valued multi-faceted citrus fruit.
Collapse
Affiliation(s)
- Mohammed N A Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hebatullah H Farghal
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
28
|
Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci 2019; 20:E5695. [PMID: 31739393 PMCID: PMC6888613 DOI: 10.3390/ijms20225695] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
It is known that extracellular vesicles (EVs) are shed from cells of almost every type of cell or organism, showing their ubiquity in all empires of life. EVs are defined as naturally released particles from cells, delimited by a lipid bilayer, and cannot replicate. These nano- to micrometer scaled spheres shuttle a set of bioactive molecules. EVs are of great interest as vehicles for drug targeting and in fundamental biological research, but in vitro culture of animal cells usually achieves only small yields. The exploration of other biological kingdoms promises comprehensive knowledge on EVs broadening the opportunities for basic understanding and therapeutic use. Thus, plants might be sustainable biofactories producing nontoxic and highly specific nanovectors, whereas bacterial and fungal EVs are promising vaccines for the prevention of infectious diseases. Importantly, EVs from different eukaryotic and prokaryotic kingdoms are involved in many processes including host-pathogen interactions, spreading of resistances, and plant diseases. More extensive knowledge of inter-species and interkingdom regulation could provide advantages for preventing and treating pests and pathogens. In this review, we present a comprehensive overview of EVs derived from eukaryota and prokaryota and we discuss how better understanding of their intercommunication role provides opportunities for both fundamental and applied biology.
Collapse
Affiliation(s)
- Eric Woith
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Matthias F. Melzig
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| |
Collapse
|