1
|
Qiu Z, Pang G, Xu X, Lin J, Wang P. Characteristics of mast cell infiltration in lung adenocarcinoma and its impact on prognosis. Discov Oncol 2024; 15:208. [PMID: 38834833 DOI: 10.1007/s12672-024-01062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The role of mast cells in malignancies remains unclear, and there is no clear correlation between mast cells and tumor microvessels, tumor growth, or lung adenocarcinoma (LUAD) prognosis. This study aims to explore the association between mast cell density (MCD) and intratumoral microvessel density (MVD), clinicopathological parameters, and prognosis in LUAD, by evaluating mast cell infiltration characteristics and their prognostic significance. METHODS This retrospective investigation involved 238 patients with LUAD undergoing complete resection. Tumor and normal lung tissue sections outside the tumor were immunohistochemically stained for MCD in the intratumoral and outside regions, respectively. CD34 polyclonal antibody was used to measure intratumoral MVD. RESULTS Intratumoral regions of LUAD had a higher MCD (P < 0.001) than normal lung tissue. In the intratumoral region, MCD and CD34-MVD were positively correlated (r = 0.411, P < 0.001). Intratumoral MCD correlated with sex, smoking history, tumor differentiation, pathological subtype, and tumor size. Female sex (P = 0.012), no smoking history (P = 0.002), acinar predominant type (P = 0.012), and tumor size ≤ 3 cm (P = 0.009) were associated with a higher MCD, whereas poorly differentiated (P = 0.039) and solid/micropapillary predominant types (P = 0.001) were associated with a lower MCD. Higher intratumoral MCD exhibited a marginally improved overall survival, and individuals with higher MCD infiltration ratios (intratumoral MCD/outside the MCD) had higher disease-free and overall survival rates (log-rank P < 0.001). A high MCD infiltration ratio was associated with decreased risk of tumor progression and death following complete resection. CONCLUSION The tumor microenvironment controls mast cell infiltration in LUAD, and patients with increased intratumoral mast cell infiltration have better prognosis.
Collapse
Affiliation(s)
- Zijian Qiu
- Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Guanchao Pang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Hangzhou, 310003, China
| | - Xia Xu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Lin
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Pingli Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Wu J, Wang F, Dong J, Zhang S, Li N, Zhao H, Liu X, Gao Z, Zhang B, Tian G. Therapeutic Response of Multifunctional Lipid and Micelle Formulation in Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45110-45123. [PMID: 36167351 DOI: 10.1021/acsami.2c10446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hepatic stellate cells (HSCs), as an important part of the tumor microenvironment (TME), could be activated by tumor cells as cancer-associated fibroblasts (CAFs), thereby promoting the production of extracellular matrix (ECM) and favoring the development of tumors. Therefore, blocking the "CAFs-ECM" axis is a promising pathway to improve antitumor efficacy. Based on this, we developed a multifunctional nanosized delivery system composed of hyaluronic acid-modified pH-sensitive liposomes (CTHLs) and glycyrrheic acid-modified nanomicelles (DGNs), which combines the advantages of targeted delivery, pH-sensitivity, and deep drug penetration. To mimic actual TME, a novel HSCs+BEL-7402 cocultured cell model and a m-HSCs+H22 coimplanted mice model were established. As expected, CTHLs and DGNs could target CAFs and tumor cells, respectively, and promote the drug penetration and retention in tumor regions. Notably, CTHLs+DGNs not only exhibited a superior antitumor effect in three-level tumor-bearing mice but also presented excellent antimetastasis efficiency in lung-metastatic mice. The antitumor mechanism revealed that the lipid&micelle mixed formulations effectively inhibited the activation of CAFs, reduced the deposition of ECM, and reversed the epithelial-mesenchymal transition (EMT) of tumor cells. In brief, the nanosized delivery system composed of CTHLs and DGNs could effectively improve the therapeutic effect of liver cancer by blocking the "CAFs-ECM" axis, which has a good clinical application prospect.
Collapse
Affiliation(s)
- Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Fangqing Wang
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, P.R. China
| | - Jinping Dong
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Suqiu Zhang
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Na Li
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Huifang Zhao
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Xuemin Liu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Zhiqin Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, P.R. China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, P.R. China
| | - Guixiang Tian
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, P.R. China
| |
Collapse
|
3
|
Li Z, Liu C, Li C, Wang F, Liu J, Zheng Z, Wu J, Zhang B. Irinotecan/scFv co-loaded liposomes coaction on tumor cells and CAFs for enhanced colorectal cancer therapy. J Nanobiotechnology 2021; 19:421. [PMID: 34906155 PMCID: PMC8670172 DOI: 10.1186/s12951-021-01172-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), as an important component of stroma, not only supply the "soils" to promote tumor invasion and metastasis, but also form a physical barrier to hinder the penetration of therapeutic agents. Based on this, the combinational strategy that action on both tumor cells and CAFs simultaneously would be a promising approach for improving the antitumor effect. RESULTS In this study, the novel multifunctional liposomes (IRI-RGD/R9-sLip) were designed, which integrated the advantages including IRI and scFv co-loading, different targets, RGD mediated active targeting, R9 promoting cell efficient permeation and lysosomal escape. As expected, IRI-RGD/R9-sLip showed enhanced cytotoxicity in different cell models, effectively increased the accumulation in tumor sites, as well as exhibited deep permeation ability both in vitro and in vivo. Notably, IRI-RGD/R9-sLip not only exhibited superior in vivo anti-tumor effect in both CAFs-free and CAFs-abundant bearing mice models, but also presented excellent anti-metastasis efficiency in lung metastasis model. CONCLUSION In a word, the novel combinational strategy by coaction on both "seeds" and "soils" of the tumor provides a new approach for cancer therapy, and the prepared liposomes could efficiently improve the antitumor effect with promising clinical application prospects.
Collapse
Affiliation(s)
- Zhaohuan Li
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Chunxi Liu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, People's Republic of China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Fangqing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jianhao Liu
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Zengjuan Zheng
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China.
| |
Collapse
|
4
|
Li Z, Ning F, Wang C, Yu H, Ma Q, Sun Y. Normalization of the tumor microvasculature based on targeting and modulation of the tumor microenvironment. NANOSCALE 2021; 13:17254-17271. [PMID: 34651623 DOI: 10.1039/d1nr03387e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Angiogenesis is an essential process for tumor development. Owing to the imbalance between pro- and anti-angiogenic factors, the tumor vasculature possesses the characteristics of tortuous, hyperpermeable vessels and compressive force, resulting in a reduction in the effect of traditional chemotherapy and radiotherapy. Anti-angiogenesis has emerged as a promising strategy for cancer treatment. Tumor angiogenesis, however, has been proved to be a complex process in which the tumor microenvironment (TME) plays a vital role in the initiation and development of the tumor microvasculature. The host stromal cells in the TME, such as cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs) and Treg cells, contribute to angiogenesis. Furthermore, the abnormal metabolic environment, such as hypoxia and acidosis, leads to the up-regulated expression of angiogenic factors. Indeed, normalization of the tumor microvasculature via targeting and modulating the TME has become a promising strategy for anti-angiogenesis and anti-tumor therapy. In this review, we summarize the abnormalities of the tumor microvasculature, tumor angiogenesis induced by an abnormal metabolic environment and host stromal cells, as well as drug delivery therapies to restore the balance between pro- and anti-angiogenic factors by targeting and normalizing the tumor vasculature in the TME.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Fang Ning
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
5
|
Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021; 18:2889-2905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cole Alexander Foster
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiawei Chen
- Michigan Institute for Clinical & Health Research, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States.,NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85721, United States.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Wang F, Li Y, Jiang H, Li C, Li Z, Qi C, Li Z, Gao Z, Zhang B, Wu J. Dual-Ligand-Modified Liposomes Co-Loaded with Anti-Angiogenic and Chemotherapeutic Drugs for Inhibiting Tumor Angiogenesis and Metastasis. Int J Nanomedicine 2021; 16:4001-4016. [PMID: 34135585 PMCID: PMC8200177 DOI: 10.2147/ijn.s309804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tumor angiogenesis has been proven to potentiate tumor growth and metastasis; therefore, the strategies targeting tumor-related angiogenesis have great potentials in antitumor therapy. METHODS Here, the GA&Gal dual-ligand-modified liposomes co-loaded with curcumin and combretastatin A-4 phosphate (CUCA/GA&Gal-Lip) were prepared and characterized. A novel "BEL-7402+HUVEC" co-cultured cell model was established to mimic tumor microenvironment. The cytotoxicity and migration assays were performed against the novel co-cultured model. Angiogenesis ability was evaluated by tube formation test, and in vivo metastatic ability was evaluated by lung metastasis test. RESULTS The result demonstrated that dual-ligand-modified liposomes showed greater inhibition of tumor angiogenesis and metastasis in comparison with other combined groups. Significantly, the mechanism analysis revealed that curcumin and combretastatin A-4 phosphate could inhibit tumor angiogenesis and metastasis via down-regulation of VEGF and VEGFR2 expression, respectively, and that GA&Gal-Lip could improve antitumor effect by GA/Gal-mediated active-targeting delivery. CONCLUSION CUCA/GA&Gal-Lip hold great potentials in hepatoma-targeting delivery of antitumor drugs and can achieve anti-angiogenic and anti-metastatic effects by simultaneously blocking VEGF/VEGFR2 signal pathway, therefore exhibiting superior anti-hepatoma efficacy.
Collapse
Affiliation(s)
- Fangqing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Yanying Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Hong Jiang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhaohuan Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Cuiping Qi
- School of Nursing, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhipeng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| |
Collapse
|
7
|
Mohammadi G, Fathian-Kolahkaj M, Mohammadi P, Adibkia K, Fattahi A. Preparation, Physicochemical Characterization and Anti-Fungal Evaluation of Amphotericin B-Loaded PLGA-PEG-Galactosamine Nanoparticles. Adv Pharm Bull 2020; 11:311-317. [PMID: 33880353 PMCID: PMC8046404 DOI: 10.34172/apb.2021.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: The present study aimed to formulate PLGA and PLGA-PEG-galactosamine nanoparticles (NPs) loaded with amphotericin B with appropriate physicochemical properties and antifungal activity. PLGA was functionalized with GalN to increase the adhesion and antifungal activity of NPs against Candida albicans. Methods: The physicochemical properties of NPs were characterized by particle size determination, zeta potential, drug crystallinity, loading efficiency, dissolution studies, differential scanning calorimeter (DSC), X-ray powder diffraction (XRPD), and Fourier transform infrared (FT-IR). Antifungal activity of the NPs at different drug/polymer ratios was examined by determining minimum inhibitory concentrations (MICs). Results: the FT-IR and 1 HNMR analysis successfully confirmed the formation of PLGA- PEG-GalN NPs. The PLGA NPs were in the size range of 174.1 ± 3.49 to 238.2±7.59 nm while PLGA-GalN NPs were 255.6 ±4.08 nm in size , respectively. Loading efficiency was in the range of 67%±2.4 to 77%±1.6, and entrapment efficiency in the range of 68.185%±1.9 to 73.05%±0.6. Zeta potential and loading efficiency for PLGA-GalN NPs were –0.456, 71%. The NPs indicated an amorphous status according to XRPD patterns and DSC thermograms. The PLGA-PEG-GalN NPs showed higher fungistatic activity than PLGA NPs. Conclusion: the results demonstrated that the antifungal activity of PLGA-PEG-GalN NPs was higher than pure amphotericin B and PLGA NPs.
Collapse
Affiliation(s)
- Ghobad Mohammadi
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Pardis Mohammadi
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khosro Adibkia
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|