1
|
Li BT, Ding XX, Dong L. Palladium(II)-Catalyzed Site-Selective C(sp 3)-H Alkenylation of Oligopeptides. Org Lett 2024; 26:9455-9459. [PMID: 39447064 DOI: 10.1021/acs.orglett.4c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
An innovative palladium-catalyzed alkenylation of peptides and vinyl iodides has been developed. This method does not require the introduction of a directing group and uses carboxylic acid groups as endogenous directing groups. It is noteworthy that two key building blocks for the ilamycins and CXCR7 modulators were prepared using our methodology. In addition, the free carboxylic acid residue can be linked to a variety of other compounds, providing a novel approach to the synthesis of peptide drugs in the future.
Collapse
Affiliation(s)
- Bing-Tong Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xing-Xing Ding
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Sunita, Singhvi N, Gupta V, Singh Y, Shukla P. Computational Approaches for the Structure-Based Identification of Novel Inhibitors Targeting Nucleoid-Associated Proteins in Mycobacterium Tuberculosis. Mol Biotechnol 2024; 66:814-823. [PMID: 36913083 DOI: 10.1007/s12033-023-00710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Implementation of computational tools in the identification of novel drug targets for Tuberculosis (TB) has been a promising area of research. TB has been a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) localized primarily on the lungs and it has been one of the most successful pathogen in the history of mankind. Extensively arising drug resistivity in TB has made it a global challenge and need for new drugs has become utmost important.The involvement of Nucleoid-Associated Proteins (NAPs) in maintaining the structure of the genomic material and regulating various cellular processes like transcription, DNA replication, repair and recombination makes significant, has opened a new arena to find the drugs targeting Mtb. The current study aims to identify potential inhibitors of NAPs through a computational approach. In the present work we worked on the eight NAPs of Mtb, namely, Lsr2, EspR, HupB, HNS, NapA, mIHF and NapM. The structural modelling and analysis of these NAPs were carried out. Moreover, molecular interaction were checked and binding energy was identified for 2500 FDA-approved drugs that were selected for antagonist analysis to choose novel inhibitors targeting NAPs of Mtb. Drugs including Amikacin, streptomycin, kanamycin, and isoniazid along with eight FDA-approved molecules that were found to be potential novel targets for these mycobacterial NAPs and have an impact on their functions. The potentiality of several anti-tubercular drugs as therapeutic agents identified through computational modelling and simulation unlocks a new gateway for accomplishing the goal to treat TB.
Collapse
Affiliation(s)
- Sunita
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nirjara Singhvi
- Department of Zoology, Hansraj College, University of Delhi, Delhi, 110007, India
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248001, India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Government of India, Dehradun, Uttarakhand, 248001, India
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Pratyoosh Shukla
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Seebacher W, Kaiser M, Mäser P, Saf R, Pferschy-Wenzig EM, Weis R. Benzyl- and dibenzyl tetrahydropyridinylidene ammonium salts with antiplasmodial and antitrypanosomal activity. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-03003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AbstractSeveral 1-benzyl and 1,3-dibenzyl derivatives of tetrahydropyridinylidene salts with differing electron withdrawing substituents at the aromatic residues have been prepared. In addition, the amine moiety in position 4 was varied. The new compounds were investigated for their antiplasmodial and antitrypanosomal activities as well as for their cytotoxicity. They were characterized using FT-IR, HRMS and NMR spectroscopy. Structure–activity relationships including reported compounds are discussed.
Graphical abstract
Collapse
|
4
|
Hosseini SM, Taheri M, Nouri F, Farmani A, Moez NM, Arabestani MR. Nano drug delivery in intracellular bacterial infection treatments. Biomed Pharmacother 2022; 146:112609. [PMID: 35062073 DOI: 10.1016/j.biopha.2021.112609] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present work aimed to review the potential mechanisms used by macrophages to kill intracellular bacteria, their entrance to the cell, and mechanisms of escape of cellular immunity and applications of various nanoparticles. Since intracellular bacteria such as Mycobacterium and Brucella can survive in host cells and can resist the lethal power of macrophages, they can cause chronic disease or recur in 10-30% of cases in improved patients Nano drug-based therapeutics are promising tools for treating intracellular bacteria and preventing recurrence of the disease caused by these bacteria. In addition, among their unique features, we can mention the small size and the ability of these compounds to purposefully reach the target location.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmani
- Department of Nanobiotechnology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narjes Morovati Moez
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Mansoldo FRP, Carta F, Angeli A, Cardoso VDS, Supuran CT, Vermelho AB. Chagas Disease: Perspectives on the Past and Present and Challenges in Drug Discovery. Molecules 2020; 25:E5483. [PMID: 33238613 PMCID: PMC7700143 DOI: 10.3390/molecules25225483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Chagas disease still has no effective treatment option for all of its phases despite being discovered more than 100 years ago. The development of commercial drugs has been stagnating since the 1960s, a fact that sheds light on the question of how drug discovery research has progressed and taken advantage of technological advances. Could it be that technological advances have not yet been sufficient to resolve this issue or is there a lack of protocol, validation and standardization of the data generated by different research teams? This work presents an overview of commercial drugs and those that have been evaluated in studies and clinical trials so far. A brief review is made of recent target-based and phenotypic studies based on the search for molecules with anti-Trypanosoma cruzi action. It also discusses how proteochemometric (PCM) modeling and microcrystal electron diffraction (MicroED) can help in the case of the lack of a 3D protein structure; more specifically, Trypanosoma cruzi carbonic anhydrase.
Collapse
Affiliation(s)
- Felipe Raposo Passos Mansoldo
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| | - Fabrizio Carta
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
| | - Andrea Angeli
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Veronica da Silva Cardoso
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
| | - Alane Beatriz Vermelho
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| |
Collapse
|