1
|
Mao G, Liu J. CALML3-AS1 enhances malignancies and stemness of small cell lung cancer cells through interacting with DAXX protein and promoting GLUT4-mediated aerobic glycolysis. Toxicol Appl Pharmacol 2025; 495:117177. [PMID: 39617259 DOI: 10.1016/j.taap.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The lncRNA CALML3 antisense RNA 1 (CALML3-AS1) is a biomarker for various cancers, including non-small cell lung cancer (NSCLC). However, the role of CALM3-AS1 in small cell lung cancer (SCLC) is still unclear. Here, we found that the CALML3-AS1 was upregulated in SCLC tissues and cells. SCLC cells (NCI-H69 and NCI-H466 cells) were transfected with small interfering RNA of CALML-AS1 (si-CALML3-AS1) and Death domain-associated protein (DAXX) (si-DAXX) or an overexpression vector of CALML-AS1 (dCas9-CALML3-AS1) and DAXX (dCas9-DAXX). The results showed that silencing CALML3-AS1 inhibited SCLC cell proliferation, colony formation, migration, invasion, and spheroid formation, and reduced the expression of stemness marker proteins (Nanog. Oct4, and Lin28). Moreover, silencing CALML3-AS1 reduced glycolysis rate, glucose utilization, and lactate production, and decreased the levels of key glycolytic regulatory proteins (GLUT1, GLUT4, HK2, and PKM2) in SCLC cells, while overexpression of CALML3-AS1 promoted malignant growth and stemness and enhanced glucose transporters type 4 (GLUT4)-mediated aerobic glycolysis by interacting with DAXX in NCI-H69 and NCI-H466 cells. Silencing DAXX or GLUT4, or treatment with 2-Deoxy-d-glucose (2-DG, a glycolysis inhibitor) reversed the effects of CALML3-AS1 overexpression on aerobic glycolysis, malignant growth, and stemness of SCLC cells. Finally, NCI-H69 cells transfected with CALML3-AS1, sh-CALML3-AS1, and sh-DAXX lentiviral vectors were subcutaneously injected into nude mice to construct xenograft models. Knockdown of CALML3-AS1 or DAXX inhibited tumor growth in SCLC in vivo. In conclusion, CALML3-AS1, an oncogene, promotes the malignancy and stemness of SCLC cells by interacting with DAXX to enhance GLUT4-mediated aerobic glycolysis, thereby promoting SCLC progression.
Collapse
Affiliation(s)
- Guangxian Mao
- Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen 518036, People's Republic of China; Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Jixian Liu
- Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen 518036, People's Republic of China; Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China.
| |
Collapse
|
2
|
Tian SQ, Shen JJ, Sun DP, Chen WM. lncRNA CHAF1B-2 contributes to the tumorigenesis of gastric cancer by activating the Wnt/β-catenin pathway. Sci Rep 2025; 15:568. [PMID: 39747989 PMCID: PMC11695584 DOI: 10.1038/s41598-024-84344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Lnc-CHAF1B-2, a newly discovered long noncoding RNA (lncRNA), plays a significant role in the evolution and prognosis of diverse neoplasms. However, its role in the development of gastric cancer is not yet fully understood. Using bioinformatics analysis of gastric cancer RNA-seq data from The Cancer Genome Atlas (TCGA) database, we investigated the expression of lnc-CHAF1B-2 in gastric carcinoma and its associated molecular signalling pathways. Verification through an array of in vivo and in vitro experiments-namely, EdU incorporation, flow cytometry, trans-well migration and invasion assays, subcutaneous tumour formation in nude mice, and western blot analysis-was conducted. We revealed notable upregulation of lnc-CHAF1B-2 in gastric cancer tissues. Furthermore, a positive correlation was detected between lnc-CHAF1B-2 levels and the occurrence of distant metastases in patients, which was inversely related to their prognostic outlook and survival rates. Moreover, our findings confirmed that lnc-CHAF1B-2 enhanced the proliferation, invasion, and migration of gastric cancer cells while inhibiting apoptosis both in vitro and in vivo. Mechanistically, lnc-CHAF1B-2 promoted the progression of gastric cancer through activating the Wnt/β-catenin signalling pathway. Thus, lnc-CHAF1B-2 and its regulation of the Wnt/β-catenin signalling pathway have emerged as prospective therapeutic targets in gastric cancer management.
Collapse
Affiliation(s)
- Shao-Qi Tian
- Department of Oncology, Jining Hospital of Xiyuan Hospital of CACMS, Jining, 272011, Shandong Province, China
| | - Jun-Jie Shen
- Department of Oncology, Tianchang Traditional Chinese Medicine Hospital, Tianchang, 239300, Anhui Province, China
| | - Dao-Ping Sun
- Department of Hematology, Jining No.1 People's Hospital, Jining, 272011, Shandong Province, China.
| | - Wen-Ming Chen
- Department of Oncology, Jining No.1 People's Hospital, Jining, 272011, Shandong Province, China.
| |
Collapse
|
3
|
Joshi S, Moody A, Budthapa P, Gurung A, Gautam R, Sanjel P, Gupta A, Aryal SP, Parajuli N, Bhattarai N. Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications. Bioengineering (Basel) 2024; 11:1292. [PMID: 39768110 PMCID: PMC11727039 DOI: 10.3390/bioengineering11121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Fluorescence is a remarkable property exhibited by many chemical compounds and biomolecules. Fluorescence has revolutionized analytical and biomedical sciences due to its wide-ranging applications in analytical and diagnostic tools of biological and environmental importance. Fluorescent molecules are frequently employed in drug delivery, optical sensing, cellular imaging, and biomarker discovery. Cancer is a global challenge and fluorescence agents can function as diagnostic as well as monitoring tools, both during early tumor progression and treatment monitoring. Many fluorescent compounds can be found in their natural form, but recent developments in synthetic chemistry and molecular biology have allowed us to synthesize and tune fluorescent molecules that would not otherwise exist in nature. Naturally derived fluorescent compounds are generally more biocompatible and environmentally friendly. They can also be modified in cost-effective and target-specific ways with the help of synthetic tools. Understanding their unique chemical structures and photophysical properties is key to harnessing their full potential in biomedical and analytical research. As drug discovery efforts require the rigorous characterization of pharmacokinetics and pharmacodynamics, fluorescence-based detection accelerates the understanding of drug interactions via in vitro and in vivo assays. Herein, we provide a review of natural products and synthetic analogs that exhibit fluorescence properties and can be used as probes, detailing their photophysical properties. We have also provided some insights into the relationships between chemical structures and fluorescent properties. Finally, we have discussed the applications of fluorescent compounds in biomedical science, mainly in the study of tumor and cancer cells and analytical research, highlighting their pivotal role in advancing drug delivery, biomarkers, cell imaging, biosensing technologies, and as targeting ligands in the diagnosis of tumors.
Collapse
Affiliation(s)
- Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Alexis Moody
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Padamlal Budthapa
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Anita Gurung
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Rachana Gautam
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Prabha Sanjel
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Aakash Gupta
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA;
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
4
|
Sawicka D, Maciak S, Sadowska A, Sokołowska E, Gohal S, Guzińska-Ustymowicz K, Niemirowicz-Laskowska K, Car H. Metabolic Rate and Oxidative Stress as a Risk Factors in the Development of Colorectal Cancer. Int J Mol Sci 2024; 25:10713. [PMID: 39409042 PMCID: PMC11476475 DOI: 10.3390/ijms251910713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
There is growing evidence that the body's energy expenditures constitute a significant risk factor for the development of most deadly diseases, including cancer. Our aim was to investigate the impact of basal metabolic rate (BMR) on the growth and progression of colorectal cancer (CRC). To do so, we used a unique model consisting of three lines of laboratory mice (Mus musculus) artificially selected for high (HBMR) and low (LBMR) basal metabolic rate and randomly bred individuals (non-selected, NSBMR). The experimental individuals were implanted with human colorectal cancer cells DLD-1. The variation in BMR between the lines allowed for testing the impact of whole-body metabolism on oxidative and antioxidant parameters in the liver throughout the cancerogenesis process. We investigated the dependence between metabolic values, reactive oxygen species (ROS) levels, and Kelch-like ECH-associated protein 1-based E3 ligase complexes (Keap1) gene activity in these animals. We found that the HBMR strain had a higher concentration of oxidative enzymes compared to the LBMR and NSBMR. Furthermore, the growth rate of CRC tumors was associated with alterations in the levels of oxidative stress enzymes and Keap1 expression in animals with a high metabolic rate. Our results indicate that a faster growth and development of CRC line DLD-1 is associated with enzymatic redox imbalance in animals with a high BMR.
Collapse
Affiliation(s)
- Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Sebastian Maciak
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego Street 1J, 15-245 Bialystok, Poland;
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Emilia Sokołowska
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona Street 15A, 15-274 Bialystok, Poland;
| | - Sylwia Gohal
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona Street 13, 15-269 Bialystok, Poland;
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| |
Collapse
|
5
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|