1
|
Gromelski M, Stoliński F, Jagiello K, Rybińska-Fryca A, Williams A, Halappanavar S, Vogel U, Puzyn T. AOP173 key event associated pathway predictor - online application for the prediction of benchmark dose lower bound (BMDLs) of a transcriptomic pathway involved in MWCNTs-induced lung fibrosis. Nanotoxicology 2022; 16:183-194. [PMID: 35452346 DOI: 10.1080/17435390.2022.2064250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nano-QSAR model allows for prediction of the toxicity of materials that have not been experimentally tested before by linking the nano-related structural properties with the biological responses induced by nanomaterials. Prediction of adverse effects caused by substances without having to perform time- and cost-consuming experiments makes QSAR models promising tools for supporting risk assessment. However, very often, newly developed nano-QSAR models are not used in practice due to the complexity of their algorithms, the necessity to have experience in chemoinformatics, and their poor accessibility. In this perspective, the aim of this paper is to encourage developers of the QSAR models to take the effort to prepare user-friendly applications based on predictive models. This would make the developed models accessible to a wider community, and, in effect, promote their further application by regulators and decision-makers. Here, we describe a web-based application that enables to predict the transcriptomic pathway-level response perturbated in the lungs of mice exposed to multiwalled carbon nanotubes. The developed application is freely available at http://aop173-event1.nanoqsar-aop.com/apps/aop_app. It requires only two types of input information related to analyzed nanotubes (their length and diameter) to assess the doses that initiate the inflammation process that may lead to lung fibrosis.
Collapse
Affiliation(s)
| | | | - Karolina Jagiello
- QSAR Lab, ul. Trzy Lipy 3, Gdańsk, Poland.,Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Tomasz Puzyn
- QSAR Lab, ul. Trzy Lipy 3, Gdańsk, Poland.,Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Aksenova NA, Tcheremenskaia O, Timashev PS, Solovieva AB. Computational prediction of photosensitizers’ toxicity. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The percentage of failures in late pharmaceutical development due to toxicity has increased dramatically over the last decade or so, resulting in increased demand for new methods to rapidly and reliably predict the toxicity of compounds. Today, computational toxicology can be used in every phase of drug discovery and development, from profiling large libraries early on, to predicting off-target effects in the mid-discovery phase, and to assess potential mutagenic impurities in development and degradants as part of life-cycle management. In this study, for the first time, in silico approaches were used to analyze the possible dark toxicity of photosensitive systems based on chlorin e6 and assessed possible toxicity of these compositions. By applying quantitative structure-activity relationship models (QSARs) and modeling adverse outcome pathways (AOPs), a potential toxic effect of water-soluble (chlorin e6 and chlorin e6 aminoamid) and hydrophobic (tetraphenylporphyrin) photosensitizers (PS) was predicted. Particularly, PSs’ protein binding ability, reactivity to form peptide adducts, glutathione conjugation, activity in dendritic cells, and gene expression activity in keratinocytes were explored. Using a metabolism simulator, possible PS metabolites were predicted and their potential toxicity was assessed as well. It was shown that all tested porphyrin PS and their predicted metabolites possess low activity in the mentioned processes and therefore are unable to cause significant adverse toxic effects under dark conditions.
Collapse
Affiliation(s)
- Nadezhda A. Aksenova
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya st., Moscow, 119991, Russia
| | - Olga Tcheremenskaia
- Environment and Health department, Instituto Superiore di Sanita, 299 Viale Regina Elena, Rome, 00161, Italy
| | - Peter S. Timashev
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya st., Moscow, 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 13, Moscow 119991, Russia
| | - Anna B. Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
| |
Collapse
|
3
|
Watford S, Edwards S, Angrish M, Judson RS, Paul Friedman K. Progress in data interoperability to support computational toxicology and chemical safety evaluation. Toxicol Appl Pharmacol 2019; 380:114707. [PMID: 31404555 PMCID: PMC7705611 DOI: 10.1016/j.taap.2019.114707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
New approach methodologies (NAMs) in chemical safety evaluation are being explored to address the current public health implications of human environmental exposures to chemicals with limited or no data for assessment. For over a decade since a push toward "Toxicity Testing in the 21st Century," the field has focused on massive data generation efforts to inform computational approaches for preliminary hazard identification, adverse outcome pathways that link molecular initiating events and key events to apical outcomes, and high-throughput approaches to risk-based ratios of bioactivity and exposure to inform relative priority and safety assessment. Projects like the interagency Tox21 program and the US EPA ToxCast program have generated dose-response information on thousands of chemicals, identified and aggregated information from legacy systems, and created tools for access and analysis. The resulting information has been used to develop computational models as viable options for regulatory applications. This progress has introduced challenges in data management that are new, but not unique, to toxicology. Some of the key questions require critical thinking and solutions to promote semantic interoperability, including: (1) identification of bioactivity information from NAMs that might be related to a biological process; (2) identification of legacy hazard information that might be related to a key event or apical outcomes of interest; and, (3) integration of these NAM and traditional data for computational modeling and prediction of complex apical outcomes such as carcinogenesis. This work reviews a number of toxicology-related efforts specifically related to bioactivity and toxicological data interoperability based on the goals established by Findable, Accessible, Interoperable, and Reusable (FAIR) Data Principles. These efforts are essential to enable better integration of NAM and traditional toxicology information to support data-driven toxicology applications.
Collapse
Affiliation(s)
- Sean Watford
- Booz Allen Hamilton, Rockville, MD 20852, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Stephen Edwards
- Research Triangle Institute International, Research Triangle Park, NC 27709, USA
| | - Michelle Angrish
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
4
|
Wilm A, Kühnl J, Kirchmair J. Computational approaches for skin sensitization prediction. Crit Rev Toxicol 2018; 48:738-760. [DOI: 10.1080/10408444.2018.1528207] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anke Wilm
- Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
- HITeC e.V, Hamburg, Germany
| | - Jochen Kühnl
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | - Johannes Kirchmair
- Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit (CBU), University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Cronin MT, Richarz AN. Relationship Between Adverse Outcome Pathways and Chemistry-BasedIn SilicoModels to Predict Toxicity. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England
| | - Andrea-Nicole Richarz
- European Commission, Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Ispra, Italy
| |
Collapse
|