1
|
Haroun M, Petrou A, Tratrat C, Kositsi K, Gavalas A, Geronikaki A, Venugopala KN, Harsha NS. Discovery of benzothiazole-based thiazolidinones as potential anti-inflammatory agents: anti-inflammatory activity, soybean lipoxygenase inhibition effect and molecular docking studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:485-497. [PMID: 35703013 DOI: 10.1080/1062936x.2022.2084772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Despite the greatest achievement in the development of anti-inflammatory agents in the last two decades, the current clinical drugs suffer from a variety of complications in community settings and hospital. There is still an urgent need to design novel molecules with better safety profile and with different molecular targets from those in current clinical use. The aim of this research was to discover a series of benzothiazole-based thiazolidinones with lipoxygenase (LOX) inhibitory activity as a mechanism of anti-inflammatory action. Carrageenan-induced mouse foot paw oedema assay was carried out to determine the anti-inflammatory activity, while LOX inhibition was examined through the conversion of sodium linoleate to 13-hydroperoxylinoleic acid. Molecular docking studies were performed using AutoDock 4.2 software. The anti-inflammatory activity of the title compounds was determined in a range of 18.4%-69.57%, where compound #3 was found to be the most potent (69.57%) and also to be more active than the reference drug indomethacin (47%). Moreover, compound #3 showed the highest LOX inhibitory activity with IC50 of 13 μM being less potent to that of the reference NDGA (IC50 = 1.3 μM). Compound #3 has been identified as lead compound for further modification in an attempt to improve anti-inflammatory and LOX inhibitory activities.
Collapse
Affiliation(s)
- M Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - A Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - K Kositsi
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Gavalas
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - N S Harsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| |
Collapse
|
2
|
Abu-Melha S. Synthesis, Molecular Modeling, and Anticancer Screening of Some New Imidazothiadiazole Analogs. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1957951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sraa Abu-Melha
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Haroun M, Tratrat C, Kolokotroni A, Petrou A, Geronikaki A, Ivanov M, Kostic M, Sokovic M, Carazo A, Mladěnka P, Sreeharsha N, Venugopala KN, Nair AB, Elsewedy HS. 5-Benzyliden-2-(5-methylthiazol-2-ylimino)thiazolidin-4-ones as Antimicrobial Agents. Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Antibiotics (Basel) 2021; 10:antibiotics10030309. [PMID: 33802949 PMCID: PMC8002837 DOI: 10.3390/antibiotics10030309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
In this study, we report the design, synthesis, computational and experimental evaluation of the antimicrobial activity, as well as docking studies of new 5-methylthiazole based thiazolidinones. All compounds demonstrated antibacterial efficacy, some of which (1, 4, 10 and 13) exhibited good activity against E. coli and B. cereus. The evaluation of antibacterial activity against three resistant strains, MRSA, P. aeruginosa and E. coli, revealed that compound 12 showed the best activity, higher than reference drugs ampicillin and streptomycin, which were inactive or exhibited only bacteriostatic activity against MRSA, respectively. Ten out of fifteen compounds demonstrated higher potency than reference drugs against a resistant strain of E. coli, which appeared to be the most sensitive species to our compounds. Compounds 8, 13 and 14 applied in a concentration equal to MIC reduced P. aeruginosa biofilm formation by more than 50%. All compounds displayed antifungal activity, with compound 10 being the most active. The majority of compounds showed better activity than ketoconazole against almost all fungal strains. In order to elucidate the mechanism of antibacterial and antifungal activities, molecular docking studies on E. coli Mur B and C. albicans CYP51 and dihydrofolate reductase were performed. Docking analysis of E. coli MurB indicated a probable involvement of MurB inhibition in the antibacterial mechanism of tested compounds while docking to 14α-lanosterol demethylase (CYP51) and tetrahydrofolate reductase of Candida albicans suggested that probable involvement of inhibition of CYP51 reductase in the antifungal activity of the compounds. Potential toxicity toward human cells is also reported.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (N.S.); (K.N.V.); (A.B.N.); (H.S.E.)
- Correspondence: (M.H.); (A.G.); Tel.: +96-655-090-9890 (M.H.); +30-230-199-7616 (A.G.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (N.S.); (K.N.V.); (A.B.N.); (H.S.E.)
| | - Aggeliki Kolokotroni
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.)
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.)
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.)
- Correspondence: (M.H.); (A.G.); Tel.: +96-655-090-9890 (M.H.); +30-230-199-7616 (A.G.)
| | - Marija Ivanov
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.S.)
| | - Marina Kostic
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.S.)
| | - Marina Sokovic
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.S.)
| | - Alejandro Carazo
- Department of pharmacology and toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Přemysl Mladěnka
- Department of pharmacology and toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (N.S.); (K.N.V.); (A.B.N.); (H.S.E.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (N.S.); (K.N.V.); (A.B.N.); (H.S.E.)
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (N.S.); (K.N.V.); (A.B.N.); (H.S.E.)
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (N.S.); (K.N.V.); (A.B.N.); (H.S.E.)
| |
Collapse
|
4
|
New Substituted 5-Benzylideno-2-Adamantylthiazol[3,2-b][1,2,4]Triazol-6(5 H)ones as Possible Anti-Inflammatory Agents. Molecules 2021; 26:molecules26030659. [PMID: 33513963 PMCID: PMC7866232 DOI: 10.3390/molecules26030659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background: Inflammation is a complex response to noxious stimuli promoted by the release of chemical mediators from the damaged cells. Metabolic products of arachidonic acid, produced by the action of cyclooxygenase and lipoxygenase, play important roles in this process. Several non-steroidal anti-inflammatory drugs act as cyclooxygenase inhibitors. However, almost all of them have undesired side effects. Methods: Prediction of the anti-inflammatory action of the compounds was performed using PASS Program. The anti-inflammatory activity was evaluated by the carrageenan paw edema test. COX and LOX inhibitory actions were tested using ovine COX-1, human recombinant COX-2 and soybean LOX-1, respectively. Docking analysis was performed using Autodock. Results: All designed derivatives had good prediction results according to PASS and were synthesized and experimentally evaluated. The compounds exhibited in vivo anti-inflammatory action with eleven being equal or better than indomethacin. Although, some of them had no or low inhibitory effect on COX-1/2 or LOX, certain compounds exhibited COX-1 inhibition much higher than naproxen and COX-2 inhibition, well explained by Docking analysis. Conclusions: A number of compounds with good anti-inflammatory action were obtained. Although, some exhibited remarkable COX inhibitory action this activity did not follow the anti-inflammatory results, indicating the implication of other mechanisms.
Collapse
|
5
|
Georgiadis MO, Kourbeli V, Papanastasiou IP, Tsotinis A, Taylor MC, Kelly JM. Synthesis and evaluation of novel 2,4-disubstituted arylthiazoles against T. brucei. RSC Med Chem 2019; 11:72-84. [PMID: 33479605 PMCID: PMC7522794 DOI: 10.1039/c9md00478e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023] Open
Abstract
2-{2-[3-(1-Adamantyl)-4-fluorophenyl]thiazol-4-yl}ethan-1-amine (1a) and 2-{2-[4-(1-adamantyl)phenyl]thiazol-4-yl}ethan-1-amine (2a) exhibit activity against T. brucei in the range of IC50 = 0.42 μM and IC50 = 0.80 μM, respectively.
The design, synthesis and pharmacological evaluation of the 4-substituted-2-[3-(adamant-1-yl)-4-fluorophenyl]thiazoles 1a–j, the 4-substituted-2-[4-(adamant-1-yl)phenyl]thiazoles 2a–h, the 2-substituted-4-[4-(adamant-1-yl)phenyl]thiazoles 3a–e, the N-substituted 2-phenylthiazol-4-ethylamides 4a, b and the N-substituted 4-phenylthiazol-2-ethylamides 4c, d is described. Compounds 1a and 2a exhibit trypanocidal activity in the range of IC50 = 0.42 μM and IC50 = 0.80 μM, respectively. Both of these derivatives bear a lipophilic end, which consists of a 4-(1-adamantyl) phenyl or a 3-(1-adamantyl)phenyl moiety, a 1,3-thiazole ring and a functional end, which comprises of an alkylamine and can be considered as promising candidates for the treatment of Trypanosoma brucei infections.
Collapse
Affiliation(s)
- Markos-Orestis Georgiadis
- Division of Pharmaceutical Chemistry , Department of Pharmacy , School of Health Sciences , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Violeta Kourbeli
- Division of Pharmaceutical Chemistry , Department of Pharmacy , School of Health Sciences , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Ioannis P Papanastasiou
- Division of Pharmaceutical Chemistry , Department of Pharmacy , School of Health Sciences , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Andrew Tsotinis
- Division of Pharmaceutical Chemistry , Department of Pharmacy , School of Health Sciences , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Martin C Taylor
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street , London WC1 E7HT , UK
| | - John M Kelly
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street , London WC1 E7HT , UK
| |
Collapse
|
6
|
Petrou A, Eleftheriou P, Geronikaki A, Akrivou MG, Vizirianakis I. Novel Thiazolidin-4-ones as Potential Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase. Molecules 2019; 24:E3821. [PMID: 31652782 PMCID: PMC6864537 DOI: 10.3390/molecules24213821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), an infectious disease with increasing incidence worldwide. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) play an important role in the treatment of AIDS. Although, many compounds are already being used as anti-HIV drugs, research for the development of new inhibitors continues as the virus develops resistant strains. METHODS The best features of available NNRTIs were taken into account for the design of novel inhibitors. PASS (Prediction of activity spectra for substances) prediction program and molecular docking studies for the selection of designed compounds were used for the synthesis. Compounds were synthesized using conventional and microwave irradiation methods and HIV RT inhibitory action was evaluated by colorimetric photometric immunoassay. RESULTS The evaluation of HIV-1 RT inhibitory activity revealed that seven compounds have significantly lower ΙC50 values than nevirapine (0.3 μΜ). It was observed that the activity of compounds depends not only on the nature of substituent and it position in benzothiazole ring but also on the nature and position of substituents in benzene ring. CONCLUSION Twenty four of the tested compounds exhibited inhibitory action lower than 4 μΜ. Seven of them showed better activity than nevirapine, while three of the compounds exhibited IC50 values lower than 5 nM. Two compounds 9 and 10 exhibited very good inhibitory activity with IC50 1 nM.
Collapse
Affiliation(s)
- Anthi Petrou
- School of Pharmacy, Department of Pharmaceutical Chemistry,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece.
| | - Athina Geronikaki
- School of Pharmacy, Department of Pharmaceutical Chemistry,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Melpomeni G Akrivou
- School of Pharmacy Department of Pharmacology and Pharmacognosy,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioannis Vizirianakis
- School of Pharmacy Department of Pharmacology and Pharmacognosy,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Geronikaki A, Petrou A, Kartsev V, Eleftheriou P, Boga R, Bartolo B, Crespan E, Franco G, Maga G. Molecular docking, design, synthesis and biological evaluation of novel 2,3-aryl-thiazolidin-4-ones as potent NNRTIs. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:697-714. [PMID: 31542957 DOI: 10.1080/1062936x.2019.1653364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) remain the most promising anti-AIDS agents that target the HIV-1 reverse transcriptase enzyme (RT). However, the efficiency of approved NNRTI drugs has decreased by the appearance of drug-resistant viruses and side effects upon long-term usage. Thus, there is an urgent need for developing new, potent NNRTIs with broad spectrum against HIV-1 virus and with improved properties. In this study, a series of thiazolidinone derivatives was designed based on a butterfly mimicking scaffold consisting of a substituted benzothiazolyl moiety connected with a substituted phenyl ring via a thiazolidinone moiety. The most promising derivatives were selected using molecular docking analysis and PASS prediction program, synthesized and evaluated for HIV-1 RT inhibition. Five out of fifteen tested compounds exhibited good inhibitory action. It was observed that the presence of Cl or CN substituents at the position 6 of the benzothiazole ring in combination with two fluoro atoms at the ortho-positions or a hydrogen acceptor substituent at the 4-position of the phenyl ring are favourable for the HIV RT inhibitory activity.
Collapse
Affiliation(s)
- A Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - A Petrou
- School of Pharmacy, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | | | - P Eleftheriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University , Thessaloniki , Greece
| | - R Boga
- BogaR Laboratories LLC , Suwanee , USA
| | - B Bartolo
- Faculty of Sciences, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" IGM-CNR , Pavia , Italy
| | - E Crespan
- Faculty of Sciences, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" IGM-CNR , Pavia , Italy
| | - G Franco
- Faculty of Sciences, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" IGM-CNR , Pavia , Italy
| | - G Maga
- Faculty of Sciences, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" IGM-CNR , Pavia , Italy
| |
Collapse
|
8
|
5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg Med Chem 2018; 26:4664-4676. [PMID: 30107969 DOI: 10.1016/j.bmc.2018.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 01/23/2023]
Abstract
In continuation of our efforts to develop new compounds with antimicrobial properties we describe design, synthesis, molecular docking study and evaluation of antimicrobial activity of seventeen novel 2-{[5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl]-imino}-5-arylidene-1,3-thiazolidin-4-ones. All compounds showed antibacterial activity against eight Gram positive and Gram negative bacterial species. Twelve out of seventeen compounds were more potent than streptomycin and all compounds exhibited higher potency than ampicillin. Compounds were also tested against three resistant bacterial strains: MRSA, P. aeruginosa and E. coli. The best antibacterial potential against ATCC and resistant strains was observed for compound 8 (2-{[5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl]-imino}-5-(4-nitrobenzylidene)-1,3thiazolidin-4-one). The most sensitive bacterium appeared to be S. typhimirium, followed by B. cereus while L. monocitogenes and M. flavus were the most resistant. Compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited antifungal activity better than the reference drugs bifonazole and ketokonazole (3-115 times). It was found that compound 8 appeared again to be the most potent. Molecular docking studies on E. coli MurB, MurA as well as C. albicans CYP 51 and dihydrofolate reductase were used for the prediction of mechanism of antibacterial and antifungal activities confirming the experimental results.
Collapse
|
9
|
Tsolaki E, Eleftheriou P, Kartsev V, Geronikaki A, Saxena AK. Application of Docking Analysis in the Prediction and Biological Evaluation of the Lipoxygenase Inhibitory Action of Thiazolyl Derivatives of Mycophenolic Acid. Molecules 2018; 23:E1621. [PMID: 29970872 PMCID: PMC6099768 DOI: 10.3390/molecules23071621] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
5-LOX inhibition is among the desired characteristics of anti-inflammatory drugs, while 15-LOX has also been considered as a drug target. Similarity in inhibition behavior between soybean LOX-1 and human 5-LOX has been observed and soybean LOX (sLOX) type 1b has been used for the evaluation of LOX inhibition in drug screening for years. After prediction of LOX inhibition by PASS and docking as well as toxicity by PROTOX and ToxPredict sixteen (E)-N-(thiazol-2-yl)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enamide derivatives with lengths varying from about 15⁻20 Å were evaluated in vitro for LOX inhibitory action using the soybean lipoxygenase sLOX 1b. Docking analysis was performed using soybean LOX L-1 (1YGE), soybean LOX-3 (1JNQ), human 5-LOX (3O8Y and 3V99) and mammalian 15-LOX (1LOX) structures. Different dimensions of target center and docking boxes and a cavity prediction algorithm were used. The compounds exhibited inhibitory action between 2.5 μΜ and 165 μΜ. Substituents with an electronegative atom at two-bond proximity to position 4 of the thiazole led to enhanced activity. Docking results indicated that the LOX structures 1JNQ, 3V99 and 1LOX can effectively be used for estimation of LOX inhibition and amino acid interactions of these compounds.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Phaedra Eleftheriou
- Department of Medical Laboratories, School of Health and Care Professions, Alexander Technological Educational Institute of Thessaloniki, 54700 Thessaloniki, Greece.
| | | | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Anil K Saxena
- Division of Medicinal & Process Chemistry, Central Drug Research Institute, 226031 Lucknow, India.
| |
Collapse
|
10
|
Liaras K, Fesatidou M, Geronikaki A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules 2018; 23:E685. [PMID: 29562646 PMCID: PMC6017610 DOI: 10.3390/molecules23030685] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a natural process that is connected to various conditions and disorders such as arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase isoenzymes (COX-1, COX-2) are responsible for the production of prostaglandins that play an important role in inflammation, traditional treatment approaches include administration of non-steroidal anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX inhibitors. Almost all of them present a number of unwanted, often serious, side effects as a consequence of interference with the arachidonic acid cascade. In search for new drugs to avoid side effects, while maintaining high potency over inflammation, scientists turned their interest to the synthesis of dual COX/LOX inhibitors, which could provide numerous therapeutic advantages in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular profile compared to conventional NSAIDs. Τhiazole and thiazolidinone moieties can be found in numerous biologically active compounds of natural origin, as well as synthetic molecules that possess a wide range of pharmacological activities. This review focuses on the biological activity of several thiazole and thiazolidinone derivatives as COX-1/COX-2 and LOX inhibitors.
Collapse
Affiliation(s)
- Konstantinos Liaras
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Maria Fesatidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| |
Collapse
|