1
|
Kızılcan DŞ, Güzel Y, Türkmenoğlu B. Clustering of atoms relative to vector space in the Z-matrix coordinate system and 'graphical fingerprint' analysis of 3D pharmacophore structure. Mol Divers 2024; 28:4087-4104. [PMID: 38280974 PMCID: PMC11659349 DOI: 10.1007/s11030-023-10798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024]
Abstract
The behavior of a molecule within its environment is governed by chemical fields present in 3D space. However, beyond local descriptors in 3D, the conformations a molecule assumes, and the resulting clusters also play a role in influencing structure-activity models. This study focuses on the clustering of atoms according to the vector space of four atoms aligned in the Z-Matrix Reference system for molecular similarity. Using 3D-QSAR analysis, it was aimed to determine the pharmacophore groups as interaction points in the binding region of the β2-adrenoceptor target of fenoterol stereoisomers. Different types of local reactive descriptors of ligands have been used to elucidate points of interaction with the target. Activity values for ligand-receptor interaction energy were determined using the Levenberg-Marquardt algorithm. Using the Molecular Comparative Electron Topology method, the 3D pharmacophore model (3D-PhaM) was obtained after aligning and superimposing the molecules and was further validated by the molecular docking method. Best guesses were calculated with a non-output validation (LOO-CV) method. Finally, the data were calculated using the 'graphic fingerprint' technique. Based on the eLKlopman (Electrostatic LUMO Klopman) descriptor, the Q2 value of this derivative set was calculated as 0.981 and the R2ext value is calculated as 0.998.
Collapse
Affiliation(s)
- Dilek Şeyma Kızılcan
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Yahya Güzel
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| |
Collapse
|
2
|
Huang HJ, Lee YH, Chou CL, Zheng CM, Chiu HW. Investigation of potential descriptors of chemical compounds on prevention of nephrotoxicity via QSAR approach. Comput Struct Biotechnol J 2022; 20:1876-1884. [PMID: 35521549 PMCID: PMC9052077 DOI: 10.1016/j.csbj.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Drug-induced nephrotoxicity remains a common problem after exposure to medications and diagnostic agents, which may be heightened in the kidney microenvironment and deteriorate kidney function. In this study, the toxic effects of fourteen marked drugs with the individual chemical structure were evaluated in kidney cells. The quantitative structure-activity relationship (QSAR) approach was employed to investigate the potential structural descriptors of each drug-related to their toxic effects. The most reasonable equation of the QSAR model displayed that the estimated regression coefficients such as the number of ring assemblies, three-membered rings, and six-membered rings were strongly related to toxic effects on renal cells. Meanwhile, the chemical properties of the tested compounds including carbon atoms, bridge bonds, H-bond donors, negative atoms, and rotatable bonds were favored properties and promote the toxic effects on renal cells. Particularly, more numbers of rotatable bonds were positively correlated with strong toxic effects that displayed on the most toxic compound. The useful information discovered from our regression QSAR models may help to identify potential hazardous moiety to avoid nephrotoxicity in renal preventive medicine.
Collapse
Key Words
- AKI, acute kidney injury
- CKD, chronic kidney disease
- DIKD, drug-induced kidney disease
- ESRD, end‐stage renal disease
- GFA, genetic function approximation
- GFR, glomerular filtration rate
- Genetic algorithm
- KCSF, keratinocyte serum-free
- Nephrotoxicity
- PBS, phosphate buffered saline
- QSAR
- QSAR, quantitative structure-activity relationship
- SRB, sulforhodamine B
Collapse
Affiliation(s)
- Hung-Jin Huang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|