1
|
Lehtonen S. Phenotypic characters of static homology increase phylogenetic stability under direct optimization of otherwise dynamic homology characters. Cladistics 2021; 36:617-626. [PMID: 34618977 DOI: 10.1111/cla.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 11/29/2022] Open
Abstract
Direct optimization of unaligned sequence characters provides a natural framework to explore the sensitivity of phylogenetic hypotheses to variation in analytical parameters. Phenotypic data, when combined into such analyses, are typically analyzed with static homology correspondences unlike the dynamic homology sequence data. Static homology characters may be expected to constrain the direct optimization and thus, potentially increase the similarity of phylogenetic hypotheses under different cost sets. However, whether a total-evidence approach increases the phylogenetic stability or not remains empirically largely unexplored. Here, I studied the impact of static homology data on sensitivity using six empirical data sets composed of several molecular markers and phenotypic data. The inclusion of static homology phenotypic data increased the average stability of phylogenetic hypothesis in five out of the six data sets. To investigate if any static homology characters would have similar effect, the analyses were repeated with randomized phenotypic data, and with one of the molecular markers fixed as static homology characters. These analyses had, on average, almost no effect on the phylogenetic stability, although the randomized phenotypic data sometimes resulted in even higher stability than empirical phenotypic data. The impact was related to the strength of the phylogenetic signal in the phenotypic data: higher average jackknife support of the phenotypic tree correlated with stronger stabilizing effect in the total-evidence analysis. Phenotypic data with a strong signal made the total-evidence trees topologically more similar to the phenotypic trees, thus, they constrained the dynamic homology correspondences of the sequence data. Characters that increase phylogenetic stability are particularly valuable for phylogenetic inference. These results indicate an important role and additive value of phenotypic data in increasing the stability of phylogenetic hypotheses in total-evidence analyses.
Collapse
Affiliation(s)
- Samuli Lehtonen
- Biodiversity Unit, University of Turku, Turku, FI-20014, Finland
| |
Collapse
|
2
|
Maldonado E, Antunes A. LMAP_S: Lightweight Multigene Alignment and Phylogeny eStimation. BMC Bioinformatics 2019; 20:739. [PMID: 31888452 PMCID: PMC6937843 DOI: 10.1186/s12859-019-3292-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 11/26/2019] [Indexed: 01/22/2023] Open
Abstract
Background Recent advances in genome sequencing technologies and the cost drop in high-throughput sequencing continue to give rise to a deluge of data available for downstream analyses. Among others, evolutionary biologists often make use of genomic data to uncover phenotypic diversity and adaptive evolution in protein-coding genes. Therefore, multiple sequence alignments (MSA) and phylogenetic trees (PT) need to be estimated with optimal results. However, the preparation of an initial dataset of multiple sequence file(s) (MSF) and the steps involved can be challenging when considering extensive amount of data. Thus, it becomes necessary the development of a tool that removes the potential source of error and automates the time-consuming steps of a typical workflow with high-throughput and optimal MSA and PT estimations. Results We introduce LMAP_S (Lightweight Multigene Alignment and Phylogeny eStimation), a user-friendly command-line and interactive package, designed to handle an improved alignment and phylogeny estimation workflow: MSF preparation, MSA estimation, outlier detection, refinement, consensus, phylogeny estimation, comparison and editing, among which file and directory organization, execution, manipulation of information are automated, with minimal manual user intervention. LMAP_S was developed for the workstation multi-core environment and provides a unique advantage for processing multiple datasets. Our software, proved to be efficient throughout the workflow, including, the (unlimited) handling of more than 20 datasets. Conclusions We have developed a simple and versatile LMAP_S package enabling researchers to effectively estimate multiple datasets MSAs and PTs in a high-throughput fashion. LMAP_S integrates more than 25 software providing overall more than 65 algorithm choices distributed in five stages. At minimum, one FASTA file is required within a single input directory. To our knowledge, no other software combines MSA and phylogeny estimation with as many alternatives and provides means to find optimal MSAs and phylogenies. Moreover, we used a case study comparing methodologies that highlighted the usefulness of our software. LMAP_S has been developed as an open-source package, allowing its integration into more complex open-source bioinformatics pipelines. LMAP_S package is released under GPLv3 license and is freely available at https://lmap-s.sourceforge.io/.
Collapse
Affiliation(s)
- Emanuel Maldonado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
3
|
Catanach TA, Sweet AD, Nguyen NPD, Peery RM, Debevec AH, Thomer AK, Owings AC, Boyd BM, Katz AD, Soto-Adames FN, Allen JM. Fully automated sequence alignment methods are comparable to, and much faster than, traditional methods in large data sets: an example with hepatitis B virus. PeerJ 2019; 7:e6142. [PMID: 30627489 PMCID: PMC6321758 DOI: 10.7717/peerj.6142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Aligning sequences for phylogenetic analysis (multiple sequence alignment; MSA) is an important, but increasingly computationally expensive step with the recent surge in DNA sequence data. Much of this sequence data is publicly available, but can be extremely fragmentary (i.e., a combination of full genomes and genomic fragments), which can compound the computational issues related to MSA. Traditionally, alignments are produced with automated algorithms and then checked and/or corrected "by eye" prior to phylogenetic inference. However, this manual curation is inefficient at the data scales required of modern phylogenetics and results in alignments that are not reproducible. Recently, methods have been developed for fully automating alignments of large data sets, but it is unclear if these methods produce alignments that result in compatible phylogenies when compared to more traditional alignment approaches that combined automated and manual methods. Here we use approximately 33,000 publicly available sequences from the hepatitis B virus (HBV), a globally distributed and rapidly evolving virus, to compare different alignment approaches. Using one data set comprised exclusively of whole genomes and a second that also included sequence fragments, we compared three MSA methods: (1) a purely automated approach using traditional software, (2) an automated approach including by eye manual editing, and (3) more recent fully automated approaches. To understand how these methods affect phylogenetic results, we compared resulting tree topologies based on these different alignment methods using multiple metrics. We further determined if the monophyly of existing HBV genotypes was supported in phylogenies estimated from each alignment type and under different statistical support thresholds. Traditional and fully automated alignments produced similar HBV phylogenies. Although there was variability between branch support thresholds, allowing lower support thresholds tended to result in more differences among trees. Therefore, differences between the trees could be best explained by phylogenetic uncertainty unrelated to the MSA method used. Nevertheless, automated alignment approaches did not require human intervention and were therefore considerably less time-intensive than traditional approaches. Because of this, we conclude that fully automated algorithms for MSA are fully compatible with older methods even in extremely difficult to align data sets. Additionally, we found that most HBV diagnostic genotypes did not correspond to evolutionarily-sound groups, regardless of alignment type and support threshold. This suggests there may be errors in genotype classification in the database or that HBV genotypes may need a revision.
Collapse
Affiliation(s)
- Therese A. Catanach
- Ornithology Department, Academy of Natural Sciences of Drexel University, Philadelphia, PA, United States of America
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States of America
| | - Andrew D. Sweet
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Nam-phuong D. Nguyen
- Computer Science and Engineering, University of San Diego, California, La Jolla, CA, United States of America
| | - Rhiannon M. Peery
- Department of Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Andrew H. Debevec
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Andrea K. Thomer
- School of Information, University of Michigan—Ann Arbor, Ann Arbor, MI, United States of America
| | - Amanda C. Owings
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Bret M. Boyd
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Department of Entomology, University of Georga, Athens, GA, United States of America
| | - Aron D. Katz
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Felipe N. Soto-Adames
- Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Gainesville, FL, United States of America
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States of America
| | - Julie M. Allen
- Biology Department, University of Nevada, Reno, Reno, NV, United States of America
| |
Collapse
|
4
|
Enabling precision medicine via standard communication of HTS provenance, analysis, and results. PLoS Biol 2018; 16:e3000099. [PMID: 30596645 PMCID: PMC6338479 DOI: 10.1371/journal.pbio.3000099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/18/2019] [Indexed: 11/30/2022] Open
Abstract
A personalized approach based on a patient's or pathogen’s unique genomic sequence is the foundation of precision medicine. Genomic findings must be robust and reproducible, and experimental data capture should adhere to findable, accessible, interoperable, and reusable (FAIR) guiding principles. Moreover, effective precision medicine requires standardized reporting that extends beyond wet-lab procedures to computational methods. The BioCompute framework (https://w3id.org/biocompute/1.3.0) enables standardized reporting of genomic sequence data provenance, including provenance domain, usability domain, execution domain, verification kit, and error domain. This framework facilitates communication and promotes interoperability. Bioinformatics computation instances that employ the BioCompute framework are easily relayed, repeated if needed, and compared by scientists, regulators, test developers, and clinicians. Easing the burden of performing the aforementioned tasks greatly extends the range of practical application. Large clinical trials, precision medicine, and regulatory submissions require a set of agreed upon standards that ensures efficient communication and documentation of genomic analyses. The BioCompute paradigm and the resulting BioCompute Objects (BCOs) offer that standard and are freely accessible as a GitHub organization (https://github.com/biocompute-objects) following the “Open-Stand.org principles for collaborative open standards development.” With high-throughput sequencing (HTS) studies communicated using a BCO, regulatory agencies (e.g., Food and Drug Administration [FDA]), diagnostic test developers, researchers, and clinicians can expand collaboration to drive innovation in precision medicine, potentially decreasing the time and cost associated with next-generation sequencing workflow exchange, reporting, and regulatory reviews. This Community Page article presents a communication standard for the provenance of high-throughput sequencing data; a BioCompute Object (BCO) can serve as a history of what was computed, be used as part of a validation process, or provide clarity and transparency of an experimental process to collaborators.
Collapse
|
5
|
Evangelista D, Thouzé F, Kohli MK, Lopez P, Legendre F. Topological support and data quality can only be assessed through multiple tests in reviewing Blattodea phylogeny. Mol Phylogenet Evol 2018; 128:112-122. [PMID: 29969656 DOI: 10.1016/j.ympev.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/18/2022]
Abstract
Assessing support for molecular phylogenies is difficult because the data is heterogeneous in quality and overwhelming in quantity. Traditionally, node support values (bootstrap frequency, Bayesian posterior probability) are used to assess confidence in tree topologies. Other analyses to assess the quality of phylogenetic data (e.g. Lento plots, saturation plots, trait consistency) and the resulting phylogenetic trees (e.g. internode certainty, parameter permutation tests, topological tests) exist but are rarely applied. Here we argue that a single qualitative analysis is insufficient to assess support of a phylogenetic hypothesis and relate data quality to tree quality. We use six molecular markers to infer the phylogeny of Blattodea and apply various tests to assess relationship support, locus quality, and the relationship between the two. We use internode-certainty calculations in conjunction with bootstrap scores, alignment permutations, and an approximately unbiased (AU) test to assess if the molecular data unambiguously support the phylogenetic relationships found. Our results show higher support for the position of Lamproblattidae, high support for the termite phylogeny, and low support for the position of Anaplectidae, Corydioidea and phylogeny of Blaberoidea. We use Lento plots in conjunction with mutation-saturation plots, calculations of locus homoplasy to assess locus quality, identify long branch attraction, and decide if the tree's relationships are the result of data biases. We conclude that multiple tests and metrics need to be taken into account to assess tree support and data robustness.
Collapse
Affiliation(s)
- Dominic Evangelista
- Institut de Systématique, Evolution, Biodiversité ISYEB - UMR 7205 - MNHN CNRS UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, CP50, 57 rue Cuvier, 75005 Paris, France.
| | - France Thouzé
- Institut de Systématique, Evolution, Biodiversité ISYEB - UMR 7205 - MNHN CNRS UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, CP50, 57 rue Cuvier, 75005 Paris, France.
| | - Manpreet Kaur Kohli
- Department of Biological Sciences, Rutgers, The State University of New Jersey, 195 University Ave., Newark, NJ 07102, United States.
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité ISYEB - UMR 7205 - MNHN CNRS UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, CP50, 57 rue Cuvier, 75005 Paris, France.
| | - Frédéric Legendre
- Institut de Systématique, Evolution, Biodiversité ISYEB - UMR 7205 - MNHN CNRS UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, CP50, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
6
|
Heinicke MP, Lemmon AR, Lemmon EM, McGrath K, Hedges SB. Phylogenomic support for evolutionary relationships of New World direct-developing frogs (Anura: Terraranae). Mol Phylogenet Evol 2018; 118:145-155. [DOI: 10.1016/j.ympev.2017.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
7
|
Hallas JM, Chichvarkhin A, Gosliner TM. Aligning evidence: concerns regarding multiple sequence alignments in estimating the phylogeny of the Nudibranchia suborder Doridina. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171095. [PMID: 29134101 PMCID: PMC5666284 DOI: 10.1098/rsos.171095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Molecular estimates of phylogenetic relationships rely heavily on multiple sequence alignment construction. There has been little consensus, however, on how to properly address issues pertaining to the alignment of variable regions. Here, we construct alignments from four commonly sequenced molecular markers (16S, 18S, 28S and cytochrome c oxidase subunit I) for the Nudibranchia using three different methodologies: (i) strict mathematical algorithm; (ii) exclusion of variable or divergent regions and (iii) manually curated, and examine how different alignment construction methods can affect phylogenetic signal and phylogenetic estimates for the suborder Doridina. Phylogenetic informativeness (PI) profiles suggest that the molecular markers tested lack the power to resolve relationships at the base of the Doridina, while being more robust at family-level classifications. This supports the lack of consistent resolution between the 19 families within the Doridina across all three alignments. Most of the 19 families were recovered as monophyletic, and instances of non-monophyletic families were consistently recovered between analyses. We conclude that the alignment of variable regions has some effect on phylogenetic estimates of the Doridina, but these effects can vary depending on the size and scope of the phylogenetic query and PI of molecular markers.
Collapse
Affiliation(s)
- Joshua M. Hallas
- Department of Biology, University of Nevada, Reno. 1664 N. Virginia St, Reno, NV 89557, USA
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr Golden Gate Park, San Francisco, CA 94118, USA
| | - Anton Chichvarkhin
- National Scientific Center of Marine Biology, Far East Branch of Russian Academy of Sciences, Palchevskogo 17, Vladivostok 690041, Russia
- Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Terrence M. Gosliner
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr Golden Gate Park, San Francisco, CA 94118, USA
| |
Collapse
|
8
|
Kjer KM, Simon C, Yavorskaya M, Beutel RG. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J R Soc Interface 2016; 13:20160363. [PMID: 27558853 PMCID: PMC5014063 DOI: 10.1098/rsif.2016.0363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecular phylogenetic studies (1985-2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Adding to the lack of consensus, this period was characterized by a polarization of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably erroneous. The size of datasets has been growing exponentially since the mid-1980s accompanied by a wave of confidence that all relationships will soon be known. However, large datasets create new challenges, and a large number of genes does not guarantee reliable results. If history is a guide, then the quality of conclusions will be determined by an improved understanding of both molecular and morphological evolution, and not simply the number of genes analysed.
Collapse
Affiliation(s)
- Karl M Kjer
- Department of Entomology and Nematology, University of California-Davis, 1282 Academic Surge, Davis, CA 95616, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Margarita Yavorskaya
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| | - Rolf G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| |
Collapse
|
9
|
Dallai R, Mercati D, Mashimo Y, Machida R, Beutel RG. The fine structure of the rectal pads of Zorotypus caudelli Karny (Zoraptera, Insecta). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:380-388. [PMID: 27368527 DOI: 10.1016/j.asd.2016.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The rectal pads of a species of the controversial polyneopteran order Zoraptera were examined using histological sections and TEM micrographs. Six pads are present along the thin rectal epithelium. Each pad consists of a few large principal cells surrounded by flattened junctional cells, which extend also beneath the principal cells. The cells are lined by a thin apical cuticle. No basal cells and no cavity have been observed beneath the pad. Principal cells have a regular layer of apical microvilli and are joined by intercellular septate junctions, which are interrupted by short dilatations of the intercellular space. At these levels the two adjacent plasma membranes are joined by short zonulae adhaerentes. In the cytoplasm, a rich system of strict associations between lateral plasma membranes and mitochondria forms scalariform junctions. Rectal pads share ultrastructural features with similar excretory organs of several neopteran groups, in particular with Blattodea (roaches and termites) and Thysanoptera, and are involved in fluid reabsorption and ion regulation.
Collapse
Affiliation(s)
- R Dallai
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100 Siena, Italy.
| | - D Mercati
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100 Siena, Italy
| | - Y Mashimo
- Sugadaira Montane Research Center, University of Tsukuba, Nagano 386-2204, Japan
| | - R Machida
- Sugadaira Montane Research Center, University of Tsukuba, Nagano 386-2204, Japan
| | - R G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Erbertstraße 1, 07743 Jena, Germany
| |
Collapse
|
10
|
Petersen G, Seberg O, Cuenca A, Stevenson DW, Thadeo M, Davis JI, Graham S, Ross TG. Phylogeny of the Alismatales (Monocotyledons) and the relationship ofAcorus(Acorales?). Cladistics 2015; 32:141-159. [DOI: 10.1111/cla.12120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Gitte Petersen
- Natural History Museum of Denmark; University of Copenhagen; Sølvgade 83 Opg. S DK-1307 Copenhagen Denmark
| | - Ole Seberg
- Natural History Museum of Denmark; University of Copenhagen; Sølvgade 83 Opg. S DK-1307 Copenhagen Denmark
| | - Argelia Cuenca
- Natural History Museum of Denmark; University of Copenhagen; Sølvgade 83 Opg. S DK-1307 Copenhagen Denmark
| | | | | | - Jerrold I. Davis
- L. H. Bailey Hortorium and Section of Plant Biology; Cornell University; Ithaca NY 14853 USA
| | - Sean Graham
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - T. Gregory Ross
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
11
|
Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, Rafael JA, Beutel RG. Comparative morphology of spermatozoa and reproductive systems of zorapteran species from different world regions (Insecta, Zoraptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:371-383. [PMID: 24657729 DOI: 10.1016/j.asd.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
The male and female reproductive apparatus of Zorotypus magnicaudelli (Malaysia), Zorotypus huxleyi (Ecuador) and Zorotypus weidneri (Brazil) were examined and documented in detail. The genital apparatus and sperm of the three species show only minor differences. The testes are larger in Z. magnicaudelli. Z. huxleyi lacks the helical appendage in the accessory glands. A long cuticular flagellum is present in Z. magnicaudelli and in the previously studied Zorotypus caudelli like in several other species, whereas it is absent in Z. weidneri, Z. huxleyi, Zorotypus hubbardi, Zorotypus impolitus and Zorotypus guineensis. Characteristic features of the very similar sperm are the presence of: a) two dense arches above the axoneme; b) a 9 + 9+2 axoneme with detached subtubules A and B of doublets 1 and 6; c) the axonemal end degenerating with enlarging accessory tubules; d) accessory tubules with 17 protofilaments; e) three accessory bodies beneath the axoneme; and f) two mitochondrial derivatives of equal shape. The first characteristic (a) is unknown outside of Zoraptera and possibly autapomorphic. The sperm structure differs distinctly in Z. impolitus and Z. hubbardi, which produce giant sperm and possess a huge spermatheca. The presence of the same sperm type in species either provided with a sclerotized coiled flagellum in males or lacking this structure indicates that a different organization of the genital apparatus does not necessarily affect the sperm structure. The flagellum and its pouch has probably evolved within Zoraptera, but it cannot be excluded that it is a groundplan feature and was reduced several times. The fossil evidence and our findings suggest that distinct modifications in the genital apparatus occurred before the fragmentation of the Gondwanan landmass in the middle Cretaceous.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100 Siena, Italy.
| | - Marco Gottardo
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100 Siena, Italy.
| | - David Mercati
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100 Siena, Italy.
| | - Ryuichiro Machida
- Sugadaira Montane Research Center, University of Tsukuba, Nagano 386-2204, Japan.
| | - Yuta Mashimo
- Sugadaira Montane Research Center, University of Tsukuba, Nagano 386-2204, Japan.
| | - Yoko Matsumura
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstr. 1, D-07743 Jena, Germany.
| | - José Albertino Rafael
- Instituto Nacional de Pesquisas da Amazonia, Caixa Postal 478, 69011-970 Manaus, AM, Brazil.
| | - Rolf Georg Beutel
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstr. 1, D-07743 Jena, Germany.
| |
Collapse
|
12
|
da Silva Paiva T, do Nascimento Borges B, da Silva-Neto ID. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data. Genet Mol Biol 2013; 36:571-85. [PMID: 24385862 PMCID: PMC3873190 DOI: 10.1590/s1415-47572013000400017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/18/2013] [Indexed: 11/25/2022] Open
Abstract
The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.
Collapse
Affiliation(s)
- Thiago da Silva Paiva
- Laboratório de Protistologia, Departamento de Zoologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ,
Brazil
- Laboratório de Biologia Molecular “Francisco Mauro Salzano”, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA,
Brazil
| | | | - Inácio Domingos da Silva-Neto
- Laboratório de Protistologia, Departamento de Zoologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ,
Brazil
| |
Collapse
|
13
|
Mashimo Y, Beutel RG, Dallai R, Lee CY, Machida R. Embryonic development of Zoraptera with special reference to external morphology, and its phylogenetic implications (Insecta). J Morphol 2013; 275:295-312. [DOI: 10.1002/jmor.20215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Yuta Mashimo
- Sugadaira Montane Research Center; University of Tsukuba; Sugadaira Kogen, Ueda Nagano 386-2204 Japan
| | - Rolf G. Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; Friedrich-Schiller-Universität Jena; Erbertstrasse 1 Jena 07743 Germany
| | - Romano Dallai
- Department of Life Sciences; University of Siena; Via A. Moro 2 Siena I-53100 Italy
| | - Chow-Yang Lee
- School of Biological Sciences; Universiti Sains Malaysia; Penang 11800 Malaysia
| | - Ryuichiro Machida
- Sugadaira Montane Research Center; University of Tsukuba; Sugadaira Kogen, Ueda Nagano 386-2204 Japan
| |
Collapse
|
14
|
Friedemann K, Spangenberg R, Yoshizawa K, Beutel RG. Evolution of attachment structures in the highly diverse Acercaria (Hexapoda). Cladistics 2013; 30:170-201. [DOI: 10.1111/cla.12030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
- Katrin Friedemann
- Entomology Group; Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; FSU Jena 07743 Germany
- Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Rico Spangenberg
- Entomology Group; Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; FSU Jena 07743 Germany
- Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Kazunori Yoshizawa
- Laboratory of Systematic Entomology; Graduate School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Rolf G. Beutel
- Entomology Group; Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; FSU Jena 07743 Germany
- Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| |
Collapse
|
15
|
Yuri T, Kimball RT, Harshman J, Bowie RCK, Braun MJ, Chojnowski JL, Han KL, Hackett SJ, Huddleston CJ, Moore WS, Reddy S, Sheldon FH, Steadman DW, Witt CC, Braun EL. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. BIOLOGY 2013; 2:419-44. [PMID: 24832669 PMCID: PMC4009869 DOI: 10.3390/biology2010419] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/19/2022]
Abstract
Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions.
Collapse
Affiliation(s)
- Tamaki Yuri
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
| | - John Harshman
- 4869 Pepperwood Way, San Jose, CA 95124, USA; E-Mail:
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; E-Mail:
| | - Michael J. Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA; E-Mails: (M.J.B.); (C.J.H.)
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD 20742, USA
| | - Jena L. Chojnowski
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
| | - Kin-Lan Han
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
| | - Shannon J. Hackett
- Zoology Department, Field Museum of Natural History, 1400 South Lakeshore Drive, Chicago, IL 60605, USA; E-Mail:
| | - Christopher J. Huddleston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA; E-Mails: (M.J.B.); (C.J.H.)
| | - William S. Moore
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; E-Mail:
| | - Sushma Reddy
- Biology Department, Loyola University Chicago, Chicago, IL 60660, USA; E-Mail:
| | - Frederick H. Sheldon
- Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA; E-Mail:
| | - David W. Steadman
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; E-Mail:
| | - Christopher C. Witt
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail:
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; E-Mails: (T.Y.); (R.T.K.); (J.L.C.); (K.-L.H.)
| |
Collapse
|
16
|
Best RJ, Stachowicz JJ. Phylogeny as a proxy for ecology in seagrass amphipods: which traits are most conserved? PLoS One 2013; 8:e57550. [PMID: 23505433 PMCID: PMC3591422 DOI: 10.1371/journal.pone.0057550] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/25/2013] [Indexed: 11/24/2022] Open
Abstract
Increasingly, studies of community assembly and ecosystem function combine trait data and phylogenetic relationships to gain novel insight into the ecological and evolutionary constraints on community dynamics. However, the key to interpreting these two types of information is an understanding of the extent to which traits are phylogenetically conserved. In this study, we develop the necessary framework for community phylogenetics approaches in a system of marine crustacean herbivores that play an important role in the ecosystem functioning of seagrass systems worldwide. For 16 species of amphipods and isopods, we (1) reconstructed phylogenetic relationships using COI, 16S, and 18S sequences and Bayesian analyses, (2) measured traits that are potentially important for assembling species between and within habitats, and (3) compared the degree to which each of these traits are evolutionarily conserved. Despite poor phylogenetic resolution for the order Amphipoda as a whole, we resolved almost all of the topology for the species in our system, and used a sampling of ultrametric trees from the posterior distribution to account for remaining uncertainty in topology and branch lengths. We found that traits varied widely in their degree of phylogenetic signal. Body mass, fecundity, and tube building showed very strong phylogenetic signal, and temperature tolerance and feeding traits showed much less. As such, the degree of signal was not predictable based on whether the trait is related to environmental filtering or to resource partitioning. Further, we found that even with strong phylogenetic signal in body size, (which may have large impacts on ecosystem function), the predictive relationship between phylogenetic diversity and ecosystem function is not straightforward. We show that patterns of phylogenetic diversity in communities of seagrass mesograzers could lead to a variety of interpretations and predictions, and that detailed study of trait similarities and differences will be necessary to interpret these patterns.
Collapse
Affiliation(s)
- Rebecca J Best
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America.
| | | |
Collapse
|
17
|
Thomas JA, Trueman JWH, Rambaut A, Welch JJ. Relaxed Phylogenetics and the Palaeoptera Problem: Resolving Deep Ancestral Splits in the Insect Phylogeny. Syst Biol 2013; 62:285-97. [DOI: 10.1093/sysbio/sys093] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jessica A. Thomas
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - John W. H. Trueman
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Andrew Rambaut
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - John J. Welch
- Department of Biology, University of York, York YO10 5DD, UK; 2Research School of Biology, Australian National University, Canberra ACT 0200, Australia; 3Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK; and 4Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
18
|
Tachi T. Molecular phylogeny and host use evolution of the genus Exorista Meigen (Diptera: Tachinidae). Mol Phylogenet Evol 2013; 66:401-11. [DOI: 10.1016/j.ympev.2012.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
19
|
Warnow T. Large-Scale Multiple Sequence Alignment and Phylogeny Estimation. MODELS AND ALGORITHMS FOR GENOME EVOLUTION 2013. [DOI: 10.1007/978-1-4471-5298-9_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Giribet G, Edgecombe GD. Stable phylogenetic patterns in scutigeromorph centipedes (Myriapoda : Chilopoda : Scutigeromorpha): dating the diversification of an ancient lineage of terrestrial arthropods. INVERTEBR SYST 2013. [DOI: 10.1071/is13019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although stable and well-supported relationships are in place for the three main clades (families) of Scutigeromorpha, the interrelationships of particular taxa within the most diverse family, Scutigeridae, are less clearly resolved. Novel molecular data for taxa from Mesoamerica, the Caribbean, southern Africa, New Guinea and previously unsampled parts of the Pacific are incorporated into phylogenetic analyses. Relationships across the tree are stable under variable analytical conditions, whether these are homology-based (multiple sequence alignment versus implied alignment; untrimmed versus trimmed datasets) or method-based (parsimony versus maximum likelihood). Hypervariable regions, contrary to common belief, add phylogenetic structure to the data, as measured by the increased support for many nodes when compared with the same alignments trimmed with Gblocks. Our analyses show that a Yule-3-rate model best explained the diversification of Scutigeromorpha during their 400 million years of history. More complete molecular data for the New Guinea genus Ballonema stabilise its position as sister group to Thereuoneminae. To reconcile scutigeromorph systematics with the phylogeny, the monotypic genus Madagassophora Verhoeff, 1936, is placed in synonymy with Scutigerina Silvestri, 1901 (n. syn.), its type species M. hova becoming Scutigerina hova (de Saussure & Zehntner, 1902) new comb. (from Scutigera), and Lassophora Verhoeff, 1905, is re-established for an Afro-Malagasy clade containing Lassophora nossibei (de Saussure & Zehntner, 1902) new comb. (from Scutigera) and a newly sequenced species from Mozambique that diverged at the base of the lineage to Thereuoneminae. The dated phylogeny of Scutigeromorpha is more consistent with ancient vicariant splits between Madagascar–southern Africa and Australia–New Caledonia than with younger dispersal scenarios, though some geologically young Pacific islands that harbour lineages dating to the Cretaceous demonstrate the potential for trans-oceanic dispersal.
Collapse
|
21
|
Rajan V. A method of alignment masking for refining the phylogenetic signal of multiple sequence alignments. Mol Biol Evol 2012. [PMID: 23193120 DOI: 10.1093/molbev/mss264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns-similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author.
Collapse
|
22
|
Petersen G, Seberg O, Davis JI. Phylogeny of the Liliales (Monocotyledons) with special emphasis on data partition congruence and RNA editing. Cladistics 2012; 29:274-295. [DOI: 10.1111/j.1096-0031.2012.00427.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Mallatt J, Craig CW, Yoder MJ. Nearly complete rRNA genes from 371 Animalia: Updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol 2012; 64:603-17. [DOI: 10.1016/j.ympev.2012.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/30/2022]
|
24
|
Hünefeld F, Missbach C, Beutel RG. The morphology and evolution of the female postabdomen of Holometabola (Insecta). ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:361-371. [PMID: 22583791 DOI: 10.1016/j.asd.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 05/31/2023]
Abstract
In the present article homology issues, character evolution and phylogenetic implications related to the female postabdomen of the holometabolan insects are discussed, based on an earlier analysis of a comprehensive morphological data set. Hymenoptera, the sistergroup of the remaining Holometabola, are the only group where the females have retained a fully developed primary ovipositor of the lepismatid type. There are no characters of the female abdomen supporting a clade Coleopterida + Neuropterida. The invagination of the terminal segments is an autapomorphy of Coleoptera. The ovipositor is substantially modified in Raphidioptera and distinctly reduced in Megaloptera and Neuroptera. The entire female abdomen is extremely simplified in Strepsiptera. The postabdomen is tapering posteriorly in Mecopterida and retractile in a telescopic manner (oviscapt). The paired ventral sclerites of segments VIII and IX are preserved, but valvifers and valvulae are not distinguishable. In Amphiesmenoptera sclerotizations derived from the ventral appendages VIII are fused ventromedially, forming a solid plate, and the appendages IX are reduced. The terminal segments are fused and form a terminal unit which bears the genital opening subapically. The presence of two pairs of apophyses and the related protraction of the terminal unit by muscle force are additional autapomorphies, as is the fusion of the rectum with the posterior part of the genital chamber (cloaca). Antliophora are supported by the presence of a transverse muscle between the ventral sclerites of segment VIII. Secondary egg laying tubes have evolved independently within Boreidae (absent in Caurinus) and in Tipulomorpha. The loss of two muscle associated with the genital chamber are likely autapomorphies of Diptera. The secondary loss of the telescopic retractability of the postabdomen is one of many autapomorphies of Siphonaptera.
Collapse
Affiliation(s)
- Frank Hünefeld
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstr. 1, D-07743 Jena, Germany.
| | | | | |
Collapse
|
25
|
|
26
|
Seberg O, Petersen G, Davis JI, Pires JC, Stevenson DW, Chase MW, Fay MF, Devey DS, Jørgensen T, Sytsma KJ, Pillon Y. Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. AMERICAN JOURNAL OF BOTANY 2012; 99:875-889. [PMID: 22539521 DOI: 10.3732/ajb.1100468] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY The Asparagales, with ca. 40% of all monocotyledons, include a host of commercially important ornamentals in families such as Orchidaceae, Alliaceae, and Iridaceae, and several important crop species in genera such as Allium, Aloe, Asparagus, Crocus, and Vanilla. Though the order is well defined, the number of recognized families, their circumscription, and relationships are somewhat controversial. METHODS Phylogenetic analyses of Asparagales were based on parsimony and maximum likelihood using nucleotide sequence variation in three plastid genes (matK, ndhF, and rbcL) and two mitochondrial genes (atp1 and cob). Branch support was assessed using both jackknife analysis implementing strict-consensus (SC) and bootstrap analysis implementing frequency-within-replicates (FWR). The contribution of edited sites in the mitochondrial genes to topology and branch support was investigated. KEY RESULTS The topologies recovered largely agree with previous results, though some clades remain poorly resolved (e.g., Ruscaceae). When the edited sites were included in the analysis, the plastid and mitochondrial genes were highly incongruent. However, when the edited sites were removed, the two partitions became congruent. CONCLUSIONS Some deeper nodes in the Asparagales tree remain poorly resolved or unresolved as do the relationships of certain monogeneric families (e.g., Aphyllanthaceae, Ixioliriaceae, Doryanthaceae), whereas support for many families increases. However, the increased support is dominated by plastid data, and the potential influence of mitochondrial and biparentially inherited single or low-copy nuclear genes should be investigated.
Collapse
Affiliation(s)
- Ole Seberg
- Botanical Garden, Natural History Museum of Denmark, Sølvgade 83, Copenhagen K, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Saurabh K, Holland BR, Gibb GC, Penny D. Gaps: an elusive source of phylogenetic information. Syst Biol 2012; 61:1075-82. [PMID: 22438330 DOI: 10.1093/sysbio/sys043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Kumar Saurabh
- IMBS/IFS/INR, Massey University, Palmerston North 4442, New Zealand
| | | | | | | |
Collapse
|
28
|
Abstract
The standard approach to phylogeny estimation uses two phases, in which the first phase produces an alignment on a set of homologous sequences, and the second phase estimates a tree on the multiple sequence alignment. POY, a method which seeks a tree/alignment pair minimizing the total treelength, is the most widely used alternative to this two-phase approach. The topological accuracy of trees computed under treelength optimization is, however, controversial. In particular, one study showed that treelength optimization using simple gap penalties produced poor trees and alignments, and suggested the possibility that if POY were used with an affine gap penalty, it might be able to be competitive with the best two-phase methods. In this paper we report on a study addressing this possibility. We present a new heuristic for treelength, called BeeTLe (Better Treelength), that is guaranteed to produce trees at least as short as POY. We then use this heuristic to analyze a large number of simulated and biological datasets, and compare the resultant trees and alignments to those produced using POY and also maximum likelihood (ML) and maximum parsimony (MP) trees computed on a number of alignments. In general, we find that trees produced by BeeTLe are shorter and more topologically accurate than POY trees, but that neither POY nor BeeTLe produces trees as topologically accurate as ML trees produced on standard alignments. These findings, taken as a whole, suggest that treelength optimization is not as good an approach to phylogenetic tree estimation as maximum likelihood based upon good alignment methods.
Collapse
Affiliation(s)
| | - Tandy Warnow
- Department of Computer Science, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
29
|
Dallai R, Mercati D, Gottardo M, Machida R, Mashimo Y, Beutel RG. The fine structure of the female reproductive system of Zorotypus caudelli Karny (Zoraptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:51-63. [PMID: 21996134 DOI: 10.1016/j.asd.2011.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/02/2011] [Accepted: 08/13/2011] [Indexed: 05/31/2023]
Abstract
The general structure of the female genital system of Zorotypus caudelli is described. The ovarioles are of the panoistic type. Due to the reduction of the envelope (tunica externa) the ovarioles are in direct contact with the hemolymph like in some other insect groups, Plecoptera included. The calices are much larger in Z. caudelli then in Zorotypus hubbardi and their epithelial cells produce large amounts of secretions, probably protecting the surface of the eggs deposited on the substrate. Eggs taken from the calyx bear a series of long fringes, which are missing in the eggs found in the ovariole, and in other zorapteran species. The long sperm of Z. caudelli and the long spermathecal duct are likely related to a sexual isolating mechanism (cryptic female choice), impeding female re-mating. The apical receptacle and the spermathecal duct - both of ectodermal origin - consist of three cell types. In addition to the cells beneath the cuticle lining the lumen, two other cell types are visible: secretory and canal cells. The cytoplasm of the former is rich in rough endoplasmic reticulum cisterns and Golgi complexes, which produce numerous discrete dense secretory bodies. These products are released into the receiving canal crossing the extracellular cavity of secretory cells, extending over a series of long microvilli. The secretion is transported towards the lumen of the apical receptacle of the spermatheca or to that of the spermathecal duct by a connecting canal formed by the canal cells. It is enriched by material produced by the slender canal cells. Before mating, the sperm cells are enveloped by a thick glycocalyx produced at the level of the male accessory glands, but it is absent when they have reached the apical receptacle, and also in the spermathecal duct lumen. It is likely removed by secretions of the spermatheca. The eggs are fertilized at the level of the common oviduct where the spermathecal duct opens. Two micropyles at the dorsal side of the equator level possibly facilitate fertilization. The presence of these two micropyles is a presumably derived feature shared with Phasmatodea. The fine structure of the female reproductive system of Z. caudelli does not allow to assess the phylogenetic position at the present stage of knowledge. The enlarged calyx and the temporary presence of long fringes on the eggs are potential autapomorphies of Z. caudelli or may indicate relationships with other Zorotypus species.
Collapse
Affiliation(s)
- R Dallai
- Department of Evolutionary Biology, Via A. Moro 2, I-53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Wang LS, Leebens-Mack J, Kerr Wall P, Beckmann K, dePamphilis CW, Warnow T. The impact of multiple protein sequence alignment on phylogenetic estimation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011; 8:1108-1119. [PMID: 21566256 DOI: 10.1109/tcbb.2009.68] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Multiple sequence alignment is typically the first step in estimating phylogenetic trees, with the assumption being that as alignments improve, so will phylogenetic reconstructions. Over the last decade or so, new multiple sequence alignment methods have been developed to improve comparative analyses of protein structure, but these new methods have not been typically used in phylogenetic analyses. In this paper, we report on a simulation study that we performed to evaluate the consequences of using these new multiple sequence alignment methods in terms of the resultant phylogenetic reconstruction. We find that while alignment accuracy is positively correlated with phylogenetic accuracy, the amount of improvement in phylogenetic estimation that results from an improved alignment can range from quite small to substantial. We observe that phylogenetic accuracy is most highly correlated with alignment accuracy when sequences are most difficult to align, and that variation in alignment accuracy can have little impact on phylogenetic accuracy when alignment error rates are generally low. We discuss these observations and implications for future work.
Collapse
Affiliation(s)
- Li-San Wang
- Department of Pathology and Laboratory Medicine and Penn Center for Bioinformatics, 1424 Blockley Hall, 423 Guardian Drive, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Enghoff H, Petersen G, Seberg O. Phylogenetic relationships in the millipede family Julidae. Cladistics 2011; 27:606-616. [DOI: 10.1111/j.1096-0031.2011.00360.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
32
|
Lücking R, Hodkinson BP, Stamatakis A, Cartwright RA. PICS-Ord: unlimited coding of ambiguous regions by pairwise identity and cost scores ordination. BMC Bioinformatics 2011; 12:10. [PMID: 21214904 PMCID: PMC3024941 DOI: 10.1186/1471-2105-12-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We present a novel method to encode ambiguously aligned regions in fixed multiple sequence alignments by 'Pairwise Identity and Cost Scores Ordination' (PICS-Ord). The method works via ordination of sequence identity or cost scores matrices by means of Principal Coordinates Analysis (PCoA). After identification of ambiguous regions, the method computes pairwise distances as sequence identities or cost scores, ordinates the resulting distance matrix by means of PCoA, and encodes the principal coordinates as ordered integers. Three biological and 100 simulated datasets were used to assess the performance of the new method. RESULTS Including ambiguous regions coded by means of PICS-Ord increased topological accuracy, resolution, and bootstrap support in real biological and simulated datasets compared to the alternative of excluding such regions from the analysis a priori. In terms of accuracy, PICS-Ord performs equal to or better than previously available methods of ambiguous region coding (e.g., INAASE), with the advantage of a practically unlimited alignment size and increased analytical speed and the possibility of PICS-Ord scores to be analyzed together with DNA data in a partitioned maximum likelihood model. CONCLUSIONS Advantages of PICS-Ord over step matrix-based ambiguous region coding with INAASE include a practically unlimited number of OTUs and seamless integration of PICS-Ord codes into phylogenetic datasets, as well as the increased speed of phylogenetic analysis. Contrary to word- and frequency-based methods, PICS-Ord maintains the advantage of pairwise sequence alignment to derive distances, and the method is flexible with respect to the calculation of distance scores. In addition to distance and maximum parsimony, PICS-Ord codes can be analyzed in a Bayesian or maximum likelihood framework. RAxML (version 7.2.6 or higher that was developed for this study) allows up to 32-state ordered or unordered characters. A GTR, MK, or ORDERED model can be applied to analyse the PICS-Ord codes partition, with GTR performing slightly better than MK and ORDERED. AVAILABILITY An implementation of the PICS-Ord algorithm is available from http://scit.us/projects/ngila/wiki/PICS-Ord. It requires both the statistical software, R http://www.r-project.org and the alignment software Ngila http://scit.us/projects/ngila.
Collapse
Affiliation(s)
- Robert Lücking
- Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA.
| | | | | | | |
Collapse
|
33
|
Murienne J, Edgecombe GD, Giribet G. Including secondary structure, fossils and molecular dating in the centipede tree of life. Mol Phylogenet Evol 2010; 57:301-13. [DOI: 10.1016/j.ympev.2010.06.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/07/2010] [Accepted: 06/25/2010] [Indexed: 11/25/2022]
|
34
|
Blair C, Murphy RW. Recent trends in molecular phylogenetic analysis: where to next? J Hered 2010; 102:130-8. [PMID: 20696667 DOI: 10.1093/jhered/esq092] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The acquisition of large multilocus sequence data is providing researchers with an unprecedented amount of information to resolve difficult phylogenetic problems. With these large quantities of data comes the increasing challenge regarding the best methods of analysis. We review the current trends in molecular phylogenetic analysis, focusing specifically on the topics of multiple sequence alignment and methods of tree reconstruction. We suggest that traditional methods are inadequate for these highly heterogeneous data sets and that researchers employ newer more sophisticated search algorithms in their analyses. If we are to best extract the information present in these data sets, a sound understanding of basic phylogenetic principles combined with modern methodological techniques are necessary.
Collapse
Affiliation(s)
- Christopher Blair
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | | |
Collapse
|
35
|
Pepato AR, da Rocha CEF, Dunlop JA. Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol 2010; 10:235. [PMID: 20678229 PMCID: PMC2933639 DOI: 10.1186/1471-2148-10-235] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 08/02/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mites (Acari) have traditionally been treated as monophyletic, albeit composed of two major lineages: Acariformes and Parasitiformes. Yet recent studies based on morphology, molecular data, or combinations thereof, have increasingly drawn their monophyly into question. Furthermore, the usually basal (molecular) position of one or both mite lineages among the chelicerates is in conflict to their morphology, and to the widely accepted view that mites are close relatives of Ricinulei. RESULTS The phylogenetic position of the acariform mites is examined through employing SSU, partial LSU sequences, and morphology from 91 chelicerate extant terminals (forty Acariformes). In a static homology framework, molecular sequences were aligned using their secondary structure as guide, whereby regions of ambiguous alignment were discarded, and pre-aligned sequences analyzed under parsimony and different mixed models in a Bayesian inference. Parsimony and Bayesian analyses led to trees largely congruent concerning infra-ordinal, well-supported branches, but with low support for inter-ordinal relationships. An exception is Solifugae + Acariformes (P. P = 100%, J. = 0.91). In a dynamic homology framework, two analyses were run: a standard POY analysis and an analysis constrained by secondary structure. Both analyses led to largely congruent trees; supporting a (Palpigradi (Solifugae Acariformes)) clade and Ricinulei as sister group of Tetrapulmonata with the topology (Ricinulei (Amblypygi (Uropygi Araneae))). Combined analysis with two different morphological data matrices were run in order to evaluate the impact of constraining the analysis on the recovered topology when employing secondary structure as a guide for homology establishment. The constrained combined analysis yielded two topologies similar to the exclusively molecular analysis for both morphological matrices, except for the recovery of Pedipalpi instead of the (Uropygi Araneae) clade. The standard (direct optimization) POY analysis, however, led to the recovery of trees differing in the absence of the otherwise well-supported group Solifugae + Acariformes. CONCLUSIONS Previous studies combining ribosomal sequences and morphology often recovered topologies similar to purely morphological analyses of Chelicerata. The apparent stability of certain clades not recovered here, like Haplocnemata and Acari, is regarded as a byproduct of the way the molecular homology was previously established using the instrumentalist approach implemented in POY. Constraining the analysis by a priori homology assessment is defended here as a way of maintaining the severity of the test when adding new data to the analysis. Although the strength of the method advocated here is keeping phylogenetic information from regions usually discarded in an exclusively static homology framework; it still has the inconvenience of being uninformative on the effect of alignment ambiguity on resampling methods of clade support estimation. Finally, putative morphological apomorphies of Solifugae + Acariformes are the reduction of the proximal cheliceral podomere, medial abutting of the leg coxae, loss of sperm nuclear membrane, and presence of differentiated germinative and secretory regions in the testis delivering their products into a common lumen.
Collapse
Affiliation(s)
- Almir R Pepato
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, 05508-900, São Paulo, Brazil
| | - Carlos EF da Rocha
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, 05508-900, São Paulo, Brazil
| | - Jason A Dunlop
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstrasse 43, 10115 Berlin, Germany
| |
Collapse
|
36
|
Morgan MJ, Kelchner SA. Inference of molecular homology and sequence alignment by direct optimization. Mol Phylogenet Evol 2010; 56:305-11. [DOI: 10.1016/j.ympev.2010.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/07/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
|
37
|
Aniba MR, Poch O, Marchler-Bauer A, Thompson JD. AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis. Nucleic Acids Res 2010; 38:6338-49. [PMID: 20530533 PMCID: PMC2965243 DOI: 10.1093/nar/gkq526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of ‘meta-methods’ that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys.
Collapse
Affiliation(s)
- Mohamed Radhouene Aniba
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale, The Centre National de la Recherche Scientifique, UMR7104, F-67400 Illkirch, Université Louis Pasteur, F-67000 Strasbourg, France
| | | | | | | |
Collapse
|
38
|
An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Mol Phylogenet Evol 2010; 55:871-82. [DOI: 10.1016/j.ympev.2010.03.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/11/2010] [Accepted: 03/09/2010] [Indexed: 11/23/2022]
|
39
|
Studying sources of incongruence in arthropod molecular phylogenies: Sea spiders (Pycnogonida) as a case study. C R Biol 2010; 333:438-53. [DOI: 10.1016/j.crvi.2010.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/18/2022]
|
40
|
Mallatt J, Craig CW, Yoder MJ. Nearly complete rRNA genes assembled from across the metazoan animals: Effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. Mol Phylogenet Evol 2010; 55:1-17. [DOI: 10.1016/j.ympev.2009.09.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 08/28/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
41
|
Wolsan M, Sato JJ. Effects of data incompleteness on the relative performance of parsimony and Bayesian approaches in a supermatrix phylogenetic reconstruction of Mustelidae and Procyonidae (Carnivora). Cladistics 2010; 26:168-194. [DOI: 10.1111/j.1096-0031.2009.00281.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Ware JL, Grimaldi DA, Engel MS. The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:204-219. [PMID: 19962450 DOI: 10.1016/j.asd.2009.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/24/2009] [Accepted: 11/27/2009] [Indexed: 05/28/2023]
Abstract
Among insects, eusocial behavior occurs in termites, ants, some bees and wasps. Isoptera and Hymenoptera convergently share social behavior, and for both taxa its evolution remains poorly understood. While dating analyses provide researchers with the opportunity to date the origin of eusociality, fossil calibration methodology may mislead subsequent ecological interpretations. Using a comprehensive termite dataset, we explored the effect of fossil placement and calibration methodology. A combined molecular and morphological dataset for 42 extant termite lineages was used, and a second dataset including these 42 taxa, plus an additional 39 fossil lineages for which we had only morphological data. MrBayes doublet-model analyses recovered similar topologies, with one minor exception (Stolotermitidae is sister to the Hodotermitidae, s.s., in the 42-taxon analysis but is in a polytomy with Hodotermitidae and (Kalotermitidae + Neoisoptera) in the 81-taxon analysis). Analyses using the r8s program on these topologies were run with either minimum/maximum constraints (analysis a = 42-taxon and analysis c = 81-taxon analyses) or with the fossil taxon ages fixed (ages fixed to be the geological age of the deposit from which they came, analysis b = 81-taxon analysis). Confidence intervals were determined for the resulting ultrametric trees, and for most major clades there was significant overlap between dates recovered for analyses A and C (with exceptions, such as the nodes Neoisoptera, and Euisoptera). With the exception of isopteran and eusiopteran node ages, however, none of the major clade ages overlapped when analysis B is compared with either analysis A or C. Future studies on Dictyoptera should note that the age of Kalotermitidae was underestimated in absence of kalotermitid fossils with fixed ages.
Collapse
Affiliation(s)
- Jessica L Ware
- Division of Invertebrate Zoology, American Museum of Natural History, 81 Street and Central Park West, New York, NY 10024, USA.
| | | | | |
Collapse
|
43
|
Koenemann S, Jenner RA, Hoenemann M, Stemme T, von Reumont BM. Arthropod phylogeny revisited, with a focus on crustacean relationships. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:88-110. [PMID: 19854296 DOI: 10.1016/j.asd.2009.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/06/2009] [Accepted: 10/14/2009] [Indexed: 05/28/2023]
Abstract
Higher-level arthropod phylogenetics is an intensely active field of research, not least as a result of the hegemony of molecular data. However, not all areas of arthropod phylogenetics have so far received equal attention. The application of molecular data to infer a comprehensive phylogeny of Crustacea is still in its infancy, and several emerging results are conspicuously at odds with morphology-based studies. In this study, we present a series of molecular phylogenetic analyses of 88 arthropods, including 57 crustaceans, representing all the major lineages, with Onychophora and Tardigrada as outgroups. Our analyses are based on published and new sequences for two mitochondrial markers, 16S rDNA and cytochrome c oxidase subunit I (COI), and the nuclear ribosomal gene 18S rDNA. We designed our phylogenetic analyses to assess the effects of different strategies of sequence alignment, alignment masking, nucleotide coding, and model settings. Our comparisons show that alignment optimization of ribosomal markers based on secondary structure information can have a radical impact on phylogenetic reconstruction. Trees based on optimized alignments recover monophyletic Arthropoda (excluding Onychophora), Pancrustacea, Malacostraca, Insecta, Myriapoda and Chelicerata, while Maxillopoda and Hexapoda emerge as paraphyletic groups. Our results are unable to resolve the highest-level relationships within Arthropoda, and none of our trees supports the monophyly of Myriochelata or Mandibulata. We discuss our results in the context of both the methodological variations between different analyses, and of recently proposed phylogenetic hypotheses. This article offers a preliminary attempt to incorporate the large diversity of crustaceans into a single molecular phylogenetic analysis, assessing the robustness of phylogenetic relationships under varying analysis parameters. It throws into sharp relief the relative strengths and shortcomings of the combined molecular data for assessing this challenging phylogenetic problem, and thereby provides useful pointers for future studies.
Collapse
Affiliation(s)
- Stefan Koenemann
- Institute for Animal Ecology and Cell Biology, University of Veterinary Medicine Hannover, Bünteweg 17d, Hannover, Germany.
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- David A. Morrison
- Section for Parasitology (SWEPAR), Swedish University of Agricultural Sciences, 751 89 Uppsala, Sweden
| |
Collapse
|
45
|
Petersen G, Knudsen H, Seberg O. Alignment, clade robustness and fungal phylogeneticsâ Crepidotaceae and sister families revisited. Cladistics 2010; 26:62-71. [DOI: 10.1111/j.1096-0031.2009.00279.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Deciphering and dating the red panda’s ancestry and early adaptive radiation of Musteloidea. Mol Phylogenet Evol 2009; 53:907-22. [DOI: 10.1016/j.ympev.2009.08.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 04/25/2009] [Accepted: 08/14/2009] [Indexed: 11/20/2022]
|
47
|
|
48
|
Charles Darwin, beetles and phylogenetics. Naturwissenschaften 2009; 96:1293-312. [DOI: 10.1007/s00114-009-0601-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/11/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
|
49
|
Wägele JW, Letsch H, Klussmann-Kolb A, Mayer C, Misof B, Wägele H. Phylogenetic support values are not necessarily informative: the case of the Serialia hypothesis (a mollusk phylogeny). Front Zool 2009; 6:12. [PMID: 19555513 PMCID: PMC2710323 DOI: 10.1186/1742-9994-6-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/26/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular phylogenies are being published increasingly and many biologists rely on the most recent topologies. However, different phylogenetic trees often contain conflicting results and contradict significant background data. Not knowing how reliable traditional knowledge is, a crucial question concerns the quality of newly produced molecular data. The information content of DNA alignments is rarely discussed, as quality statements are mostly restricted to the statistical support of clades. Here we present a case study of a recently published mollusk phylogeny that contains surprising groupings, based on five genes and 108 species, and we apply new or rarely used tools for the analysis of the information content of alignments and for the filtering of noise (masking of random-like alignment regions, split decomposition, phylogenetic networks, quartet mapping). RESULTS The data are very fragmentary and contain contaminations. We show that that signal-like patterns in the data set are conflicting and partly not distinct and that the reported strong support for a "rather surprising result" (monoplacophorans and chitons form a monophylum Serialia) does not exist at the level of primary homologies. Split-decomposition, quartet mapping and neighbornet analyses reveal conflicting nucleotide patterns and lack of distinct phylogenetic signal for the deeper phylogeny of mollusks. CONCLUSION Even though currently a majority of molecular phylogenies are being justified with reference to the 'statistical' support of clades in tree topologies, this confidence seems to be unfounded. Contradictions between phylogenies based on different analyses are already a strong indication of unnoticed pitfalls. The use of tree-independent tools for exploratory analyses of data quality is highly recommended. Concerning the new mollusk phylogeny more convincing evidence is needed.
Collapse
Affiliation(s)
- J Wolfgang Wägele
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53313 Bonn, Germany
| | - Harald Letsch
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53313 Bonn, Germany
| | - Annette Klussmann-Kolb
- J. W. Goethe University, Institute for Ecology, Evolution and Diversity, Siesmayerstrasse 70, D – 60054 Frankfurt am Main, Germany
| | - Christoph Mayer
- Ruhr-University Bochum, Faculty of Biology, Universitätsstr., 44370 Bochum, Germany
| | - Bernhard Misof
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53313 Bonn, Germany
| | - Heike Wägele
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53313 Bonn, Germany
| |
Collapse
|
50
|
Lopez-Vaamonde C, Wikström N, Kjer KM, Weiblen GD, Rasplus JY, Machado CA, Cook JM. Molecular dating and biogeography of fig-pollinating wasps. Mol Phylogenet Evol 2009; 52:715-26. [PMID: 19500682 DOI: 10.1016/j.ympev.2009.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/05/2009] [Accepted: 05/26/2009] [Indexed: 11/18/2022]
Abstract
Figs and fig-pollinating wasps are obligate mutualists that have coevolved for over 60 million years. But when and where did pollinating fig wasps (Agaonidae) originate? Some studies suggest that agaonids arose in the Late Cretaceous and the current distribution of fig-wasp faunas can be explained by the break-up of the Gondwanan landmass. However, recent molecular-dating studies suggest divergence time estimates that are inconsistent with the Gondwanan vicariance hypothesis and imply that long distance oceanic dispersal could have been an important process for explaining the current distribution of both figs and fig wasps. Here, we use a combination of phylogenetic and biogeographical data to infer the age, the major period of diversification, and the geographic origin of pollinating fig wasps. Age estimates ranged widely depending on the molecular-dating method used and even when using the same method but with slightly different constraints, making it difficult to assess with certainty a Gondwanan origin of agaonids. The reconstruction of ancestral areas suggests that the most recent common ancestor of all extant fig-pollinating wasps was most likely Asian, although a southern Gondwana origin cannot be rejected. Our analysis also suggests that dispersal has played a more important role in the development of the fig-wasp biota than previously assumed.
Collapse
|