1
|
Haselkorn TS, DiSalvo S, Miller JW, Bashir U, Brock DA, Queller DC, Strassmann JE. The specificity of Burkholderia symbionts in the social amoeba farming symbiosis: Prevalence, species, genetic and phenotypic diversity. Mol Ecol 2019; 28:847-862. [PMID: 30575161 DOI: 10.1111/mec.14982] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023]
Abstract
The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoeba Dictyostelium discoideum, certain strains of Burkholderia bacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. Some Burkholderia strains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence of Burkholderia symbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates of D. discoideum and found 25% infected with Burkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions by Burkholderia to the symbiotic lifestyle. Finally, we tested the ability of 38 strains of Burkholderia from D. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis in D. discoideum. Only D. discoideum native isolates belonging to the Burkholderia agricolaris, B. hayleyella, and B. bonniea species were able to form persistent symbiotic associations with D. discoideum. The Burkholderia-Dictyostelium relationship provides a promising arena for further studies of the pathway to symbiosis in a unique system.
Collapse
Affiliation(s)
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Jacob W Miller
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Usman Bashir
- Department of Biology, Washington University in St. Louis, Missouri
| | - Debra A Brock
- Department of Biology, Washington University in St. Louis, Missouri
| | - David C Queller
- Department of Biology, Washington University in St. Louis, Missouri
| | | |
Collapse
|
2
|
Otero-Bravo A, Goffredi S, Sabree ZL. Cladogenesis and Genomic Streamlining in Extracellular Endosymbionts of Tropical Stink Bugs. Genome Biol Evol 2019; 10:680-693. [PMID: 29420776 PMCID: PMC5822708 DOI: 10.1093/gbe/evy033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 01/21/2023] Open
Abstract
Phytophagous stink bugs are globally distributed and many harbor vertically inherited bacterial symbionts that are extracellular, yet little is known about how the symbiont’s genomes have evolved under this transmission strategy. Genome reduction is common in insect intracellular symbionts but limited genome sampling of the extracellular symbionts of distantly related stink bugs has precluded inferring patterns of extracellular symbiont genome evolution. To address this knowledge gap, we completely sequenced the genomes of the uncultivable bacterial symbionts of four neotropical stink bugs of the Edessa genus. Phylogenetic and comparative analyses indicated that the symbionts form a clade within the Pantoea genus and their genomes are highly reduced (∼0.8 Mb). Furthermore, genome synteny analysis and a jackknife approach for phylogenetic reconstruction, which corrected for long branch attraction artifacts, indicated that the Edessa symbionts were the result of a single symbiotic event that was distinct from the symbiosis event giving rise to Candidatus “Pantoea carbekii,” the extracellular symbiont of the invasive pentatomid stink bug, Halyomorpha halys. Metabolic functions inferred from the Edessa symbiont genomes suggests a shift in genomic composition characteristic of its lifestyle in that they retained many host-supportive functions while undergoing dramatic gene loss and establishing a stable relationship with their host insects. Given the undersampled nature of extracellular insect symbionts, this study is the first comparative analysis of these symbiont genomes from four distinct Edessa stink bug species. Finally, we propose the candidate name “Candidatus Pantoea edessiphila” for the species of these symbionts with strain designations according to their host species.
Collapse
Affiliation(s)
| | - Shana Goffredi
- Department of Biology, Occidental College, Los Angeles, California
| | - Zakee L Sabree
- Department of Evolution, Ecology and Organismal Biology, Ohio State University
| |
Collapse
|
3
|
ZHANG LI, KANG HAN, JIN SHAN, ZENG QINGTAO, YANG YONG. Hsp27 gene in Drosophila ananassae subgroup was split by a recently acquired intron. J Genet 2016; 95:257-62. [DOI: 10.1007/s12041-016-0629-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Fares M. Identifying Evolution Signatures in Molecules. NATURAL SELECTION 2014:9-27. [DOI: 10.1201/b17795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol 2011; 9:87. [PMID: 22201529 PMCID: PMC3271043 DOI: 10.1186/1741-7007-9-87] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from the loosely associated commensals, often designated as secondary (S) symbionts, to obligate mutualists, called primary (P) symbionts. Determination of the evolutionary processes behind this phenomenon has long been hampered by the unreliability of phylogenetic reconstructions within this group of bacteria. The main reasons have been the absence of sufficient data, the highly derived nature of the symbiont genomes and lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to cluster as a monophyletic group. This state of phylogenetic uncertainty is now improving with an increasing number of complete bacterial genomes and development of new methods. In this study, we address the monophyly versus polyphyly of enterobacterial symbionts by exploring a multigene matrix within a complex phylogenetic framework. RESULTS We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69 orthologous genes with no missing data) and analyzed both nucleic and amino acid data sets using several probabilistic methods. We particularly focused on the long-branch attraction-reducing methods, such as a nucleotide and amino acid data recoding and exclusion (including our new approach and slow-fast analysis), taxa exclusion and usage of complex evolutionary models, such as nonhomogeneous model and models accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our data strongly suggest independent origins of four symbiotic clusters; the first is formed by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the Erwinia and Pantoea clade. CONCLUSIONS The results of this study confirm the efficiency of several artifact-reducing methods and strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae. Interestingly, the model species of symbiotic bacteria research, Buchnera and Wigglesworthia, originated from closely related, but different, ancestors. The possible origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are suggested, as well as the role of facultative secondary symbionts as a source of bacteria that can gradually become obligate maternally transferred symbionts.
Collapse
Affiliation(s)
- Filip Husník
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Tomáš Chrudimský
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
- Institute of Parasitology, Biology Centre of ASCR, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
6
|
Frajman B, Schönswetter P. Giants and dwarfs: Molecular phylogenies reveal multiple origins of annual spurges within Euphorbia subg. Esula. Mol Phylogenet Evol 2011; 61:413-24. [DOI: 10.1016/j.ympev.2011.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/07/2011] [Accepted: 06/13/2011] [Indexed: 11/26/2022]
|
7
|
Barrantes-Reynolds R, Wallace SS, Bond JP. Using shifts in amino acid frequency and substitution rate to identify latent structural characters in base-excision repair enzymes. PLoS One 2011; 6:e25246. [PMID: 21998646 PMCID: PMC3188539 DOI: 10.1371/journal.pone.0025246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 08/30/2011] [Indexed: 12/30/2022] Open
Abstract
Protein evolution includes the birth and death of structural motifs. For example, a zinc finger or a salt bridge may be present in some, but not all, members of a protein family. We propose that such transitions are manifest in sequence phylogenies as concerted shifts in substitution rates of amino acids that are neighbors in a representative structure. First, we identified rate shifts in a quartet from the Fpg/Nei family of base excision repair enzymes using a method developed by Xun Gu and coworkers. We found the shifts to be spatially correlated, more precisely, associated with a flexible loop involved in bacterial Fpg substrate specificity. Consistent with our result, sequences and structures provide convincing evidence that this loop plays a very different role in other family members. Second, then, we developed a method for identifying latent protein structural characters (LSC) given a set of homologous sequences based on Gu's method and proximity in a high-resolution structure. Third, we identified LSC and assigned states of LSC to clades within the Fpg/Nei family of base excision repair enzymes. We describe seven LSC; an accompanying Proteopedia page (http://proteopedia.org/wiki/index.php/Fpg_Nei_Protein_Family) describes these in greater detail and facilitates 3D viewing. The LSC we found provided a surprisingly complete picture of the interaction of the protein with the DNA capturing familiar examples, such as a Zn finger, as well as more subtle interactions. Their preponderance is consistent with an important role as phylogenetic characters. Phylogenetic inference based on LSC provided convincing evidence of independent losses of Zn fingers. Structural motifs may serve as important phylogenetic characters and modeling transitions involving structural motifs may provide a much deeper understanding of protein evolution.
Collapse
Affiliation(s)
- Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
8
|
Shavit Grievink L, Penny D, Hendy MD, Holland BR. Phylogenetic tree reconstruction accuracy and model fit when proportions of variable sites change across the tree. Syst Biol 2010; 59:288-97. [PMID: 20525636 PMCID: PMC2850392 DOI: 10.1093/sysbio/syq003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Commonly used phylogenetic models assume a homogeneous process through time in all parts of the tree. However, it is known that these models can be too simplistic as they do not account for nonhomogeneous lineage-specific properties. In particular, it is now widely recognized that as constraints on sequences evolve, the proportion and positions of variable sites can vary between lineages causing heterotachy. The extent to which this model misspecification affects tree reconstruction is still unknown. Here, we evaluate the effect of changes in the proportions and positions of variable sites on model fit and tree estimation. We consider 5 current models of nucleotide sequence evolution in a Bayesian Markov chain Monte Carlo framework as well as maximum parsimony (MP). We show that for a tree with 4 lineages where 2 nonsister taxa undergo a change in the proportion of variable sites tree reconstruction under the best-fitting model, which is chosen using a relative test, often results in the wrong tree. In this case, we found that an absolute test of model fit is a better predictor of tree estimation accuracy. We also found further evidence that MP is not immune to heterotachy. In addition, we show that increased sampling of taxa that have undergone a change in proportion and positions of variable sites is critical for accurate tree reconstruction.
Collapse
Affiliation(s)
- Liat Shavit Grievink
- Institut für Botanik III, Heinrich-Heine Universität, Universitätstrasse 1, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
9
|
Sheffield NC, Song H, Cameron SL, Whiting MF. Nonstationary Evolution and Compositional Heterogeneity in Beetle Mitochondrial Phylogenomics. Syst Biol 2009; 58:381-94. [DOI: 10.1093/sysbio/syp037] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nathan C. Sheffield
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
- Program in Computational Biology & Bioinformatics, Institute for Genome Sciences and Policy, Duke University, Box 90090, Durham, NC 27708, USA
| | - Hojun Song
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Stephen L. Cameron
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Entomology, PO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | | |
Collapse
|
10
|
Molecular Coevolution and the Three-Dimensionality of Natural Selection. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Montgelard C, Forty E, Arnal V, Matthee CA. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evol Biol 2008; 8:321. [PMID: 19036132 PMCID: PMC2613922 DOI: 10.1186/1471-2148-8-321] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 11/26/2008] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using approximately 7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. RESULTS Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). CONCLUSION The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha (Castoridae + Geomyoidea). The second suprafamilial clustering identified a novel association between the Sciuromorpha (Gliridae + (Sciuridae + Aplodontidae)) and the Hystricomorpha (Ctenodactylidae + Hystricognathi) which together represents the earliest dichotomy among Rodentia. Molecular time estimates using a relaxed Bayesian molecular clock dates the appearance of the five suborders nearly contemporaniously at the KT boundary and this is congruent with suggestions of an early explosion of rodent diversity. Based on these newly proposed phylogenetic relationships, the evolution of the zygomasseteric pattern that has been used for a long time in rodent systematics is evaluated.
Collapse
Affiliation(s)
- Claudine Montgelard
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554), Université de Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex, France
- Current address : Biogéographie et Ecologie des Vertébrés (EPHE), Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175), 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | - Ellen Forty
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554), Université de Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex, France
| | - Véronique Arnal
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554), Université de Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex, France
- Current address : Biogéographie et Ecologie des Vertébrés (EPHE), Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175), 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
12
|
Shavit Grievink L, Penny D, Hendy MD, Holland BR. LineageSpecificSeqgen: generating sequence data with lineage-specific variation in the proportion of variable sites. BMC Evol Biol 2008; 8:317. [PMID: 19021917 PMCID: PMC2613921 DOI: 10.1186/1471-2148-8-317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/21/2008] [Indexed: 11/10/2022] Open
Abstract
Background Commonly used phylogenetic models assume a homogeneous evolutionary process throughout the tree. It is known that these homogeneous models are often too simplistic, and that with time some properties of the evolutionary process can change (due to selection or drift). In particular, as constraints on sequences evolve, the proportion of variable sites can vary between lineages. This affects the ability of phylogenetic methods to correctly estimate phylogenetic trees, especially for long timescales. To date there is no phylogenetic model that allows for change in the proportion of variable sites, and the degree to which this affects phylogenetic reconstruction is unknown. Results We present LineageSpecificSeqgen, an extension to the seq-gen program that allows generation of sequences with both changes in the proportion of variable sites and changes in the rate at which sites switch between being variable and invariable. In contrast to seq-gen and its derivatives to date, we interpret branch lengths as the mean number of substitutions per variable site, as opposed to the mean number of substitutions per site (which is averaged over all sites, including invariable sites). This allows specification of the substitution rates of variable sites, independently of the proportion of invariable sites. Conclusion LineageSpecificSeqgen allows simulation of DNA and amino acid sequence alignments under a lineage-specific evolutionary process. The program can be used to test current models of evolution on sequences that have undergone lineage-specific evolution. It facilitates the development of both new methods to identify such processes in real data, and means to account for such processes. The program is available at: http://awcmee.massey.ac.nz/downloads.htm.
Collapse
Affiliation(s)
- Liat Shavit Grievink
- The Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
13
|
Kolaczkowski B, Thornton JW. A mixed branch length model of heterotachy improves phylogenetic accuracy. Mol Biol Evol 2008; 25:1054-66. [PMID: 18319244 PMCID: PMC3299401 DOI: 10.1093/molbev/msn042] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2008] [Indexed: 11/14/2022] Open
Abstract
Evolutionary relationships are typically inferred from molecular sequence data using a statistical model of the evolutionary process. When the model accurately reflects the underlying process, probabilistic phylogenetic methods recover the correct relationships with high accuracy. There is ample evidence, however, that models commonly used today do not adequately reflect real-world evolutionary dynamics. Virtually all contemporary models assume that relatively fast-evolving sites are fast across the entire tree, whereas slower sites always evolve at relatively slower rates. Many molecular sequences, however, exhibit site-specific changes in evolutionary rates, called "heterotachy." Here we examine the accuracy of 2 phylogenetic methods for incorporating heterotachy, the mixed branch length model--which incorporates site-specific rate changes by summing likelihoods over multiple sets of branch lengths on the same tree--and the covarion model, which uses a hidden Markov process to allow sites to switch between variable and invariable as they evolve. Under a variety of simple heterogeneous simulation conditions, the mixed model was dramatically more accurate than homotachous models, which were subject to topological biases as well as biases in branch length estimates. When data were simulated with strong versions of the types of heterotachy observed in real molecular sequences, the mixed branch length model was more accurate than homotachous techniques. Analyses of empirical data sets confirmed that the mixed branch length model can improve phylogenetic accuracy under conditions that cause homotachous models to fail. In contrast, the covarion model did not improve phylogenetic accuracy compared with homotachous models and was sometimes substantially less accurate. We conclude that a mixed branch length approach, although not the solution to all phylogenetic errors, is a valuable strategy for improving the accuracy of inferred trees.
Collapse
|
14
|
Characterizing positive and negative selection and their phylogenetic effects. Gene 2008; 418:22-6. [PMID: 18486364 DOI: 10.1016/j.gene.2008.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/27/2008] [Accepted: 03/27/2008] [Indexed: 11/22/2022]
Abstract
Total evidence and the use of large datasets to overcome uncertainty are the state of the art in systematic analysis. This assumes that the only true phylogenetic signal is ancestry and that functional, structural, and other factors will not add an alternative signal. Using gene families, where individual codon positions were sorted into bins based upon average-pairwise dN/dS ratio, we show that standard, common phylogenetic methods that were designed for stochastic, neutral, site-independent processes, generate less robust phylogenetic signal for bins with strong negative or positive selection. This was true for phylogenetic reconstruction with parsimony, distance, and likelihood methods. Further, we present a case for the potential existence of systematic functional or structural signal that competes with ancestral signal. For the example of positive selection, we simulate the evolution of sequences through three dimensional lattice constructs with folding constraint and changing binding functionality and show that total evidence for these lattice genes presents trees with functional signal, but that the neutral synonymous sites in these genes show the true ancestral signal. In this case, sequence convergence is promoted by functional convergence.
Collapse
|
15
|
Matsen FA, Steel M. Phylogenetic mixtures on a single tree can mimic a tree of another topology. Syst Biol 2008; 56:767-75. [PMID: 17886146 DOI: 10.1080/10635150701627304] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Phylogenetic mixtures model the inhomogeneous molecular evolution commonly observed in data. The performance of phylogenetic reconstruction methods where the underlying data are generated by a mixture model has stimulated considerable recent debate. Much of the controversy stems from simulations of mixture model data on a given tree topology for which reconstruction algorithms output a tree of a different topology; these findings were held up to show the shortcomings of particular tree reconstruction methods. In so doing, the underlying assumption was that mixture model data on one topology can be distinguished from data evolved on an unmixed tree of another topology given enough data and the "correct" method. Here we show that this assumption can be false. For biologists, our results imply that, for example, the combined data from two genes whose phylogenetic trees differ only in terms of branch lengths can perfectly fit a tree of a different topology.
Collapse
Affiliation(s)
- Frederick A Matsen
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.
| | | |
Collapse
|
16
|
Wang HC, Susko E, Spencer M, Roger AJ. Topological estimation biases with covarion evolution. J Mol Evol 2007; 66:50-60. [PMID: 18080080 DOI: 10.1007/s00239-007-9062-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/02/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Covarion processes allow changes in evolutionary rates at sites along the branches of a phylogenetic tree. Covarion-like evolution is increasingly recognized as an important mode of protein evolution. Several recent reports suggest that maximum likelihood estimation employing covarion models may support different optimal topologies than estimation using standard rates-across-sites (RAS) models. However, it remains to be demonstrated that ignoring covarion evolution will generally result in topological misestimation. In this study we performed analytical and theoretical studies of limiting distances under the covarion model and four-taxon tree simulations to investigate the extent to which the covarion process impacts on phylogenetic estimation. In particular, we assessed the limits of an RAS model-based maximum likelihood method to recover the phylogenies when the sequence data were simulated under the covarion processes. We find that, when ignored, covarion processes can induce systematic errors in phylogeny reconstruction. Surprisingly, when sequences are evolved under a covarion process but an RAS model is used for estimation, we find that a long branch repel bias occurs.
Collapse
Affiliation(s)
- Huai-Chun Wang
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|