1
|
Correia Y, Scheel J, Gupta S, Wang K. Placental mitochondrial function as a driver of angiogenesis and placental dysfunction. Biol Chem 2021; 402:887-909. [PMID: 34218539 DOI: 10.1515/hsz-2021-0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
The placenta is a highly vascularized and complex foetal organ that performs various tasks, crucial to a healthy pregnancy. Its dysfunction leads to complications such as stillbirth, preeclampsia, and intrauterine growth restriction. The specific cause of placental dysfunction remains unknown. Recently, the role of mitochondrial function and mitochondrial adaptations in the context of angiogenesis and placental dysfunction is getting more attention. The required energy for placental remodelling, nutrient transport, hormone synthesis, and the reactive oxygen species leads to oxidative stress, stemming from mitochondria. Mitochondria adapt to environmental changes and have been shown to adjust their oxygen and nutrient use to best support placental angiogenesis and foetal development. Angiogenesis is the process by which blood vessels form and is essential for the delivery of nutrients to the body. This process is regulated by different factors, pro-angiogenic factors and anti-angiogenic factors, such as sFlt-1. Increased circulating sFlt-1 levels have been linked to different preeclamptic phenotypes. One of many effects of increased sFlt-1 levels, is the dysregulation of mitochondrial function. This review covers mitochondrial adaptations during placentation, the importance of the anti-angiogenic factor sFlt-1in placental dysfunction and its role in the dysregulation of mitochondrial function.
Collapse
Affiliation(s)
- Yolanda Correia
- Aston Medical School, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany
| | - Keqing Wang
- Aston Medical School, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
2
|
Gebara N, Correia Y, Wang K, Bussolati B. Angiogenic Properties of Placenta-Derived Extracellular Vesicles in Normal Pregnancy and in Preeclampsia. Int J Mol Sci 2021; 22:5402. [PMID: 34065595 PMCID: PMC8160914 DOI: 10.3390/ijms22105402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the main processes that coordinate the biological events leading to a successful pregnancy, and its imbalance characterizes several pregnancy-related diseases, including preeclampsia. Intracellular interactions via extracellular vesicles (EVs) contribute to pregnancy's physiology and pathophysiology, and to the fetal-maternal interaction. The present review outlines the implications of EV-mediated crosstalk in the angiogenic process in healthy pregnancy and its dysregulation in preeclampsia. In particular, the effect of EVs derived from gestational tissues in pro and anti-angiogenic processes in the physiological and pathological setting is described. Moreover, the application of EVs from placental stem cells in the clinical setting is reported.
Collapse
Affiliation(s)
- Natalia Gebara
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Yolanda Correia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; (Y.C.); (K.W.)
| | - Keqing Wang
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; (Y.C.); (K.W.)
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
3
|
Nelson KM, Irvin-Choy N, Hoffman MK, Gleghorn JP, Day ES. Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. Adv Drug Deliv Rev 2021; 170:425-438. [PMID: 33002575 DOI: 10.1016/j.addr.2020.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Maternal mortality rates in the United States have steadily increased since 1987 to the current rate of over 16 deaths per 100,000 live births. Whereas most of these deaths are related to an underlying condition, such as cardiovascular disease, many pregnant women die from diseases that emerge as a consequence of pregnancy. Both pre-existing and emergent diseases and conditions are difficult to treat in pregnant women because of the potential harmful effects of the treatment on the developing fetus. Often the health of the woman and the health of the baby are at odds and must be weighed against each other when medical treatment is needed, frequently leading to iatrogenic preterm birth. However, the use of engineered nanomedicines has the potential to fill the treatment gap for pregnant women. This review describes several conditions that may afflict pregnant women and fetuses and introduces how engineered nanomedicines may be used to treat these illnesses. Although the field of maternal-fetal nanomedicine is in its infancy, with additional research and development, engineered nanotherapeutics may greatly improve outcomes for pregnant women and their offspring in the future.
Collapse
|
4
|
Moore KH, Chapman H, George EM. Unfractionated heparin displaces sFlt-1 from the placental extracellular matrix. Biol Sex Differ 2020; 11:34. [PMID: 32600401 PMCID: PMC7325113 DOI: 10.1186/s13293-020-00311-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is an anti-angiogenic protein which is secreted by numerous cell types and acts as a decoy receptor for the angiogenic protein vascular endothelial growth factor (VEGF). Despite its physiologic importance in maintaining angiogenic balance, excess sFlt-1 levels are associated with the pathogenesis of many diseases, especially those with angiogenic imbalance, endothelial dysfunction, and hypertension. Although sFlt-1 is a soluble protein, it contains a binding site for the extracellular matrix component heparan sulfate. This allows cells to retain and localize sFlt-1 in order to prevent excessive VEGF signaling. During pregnancy, placental syncytiotrophoblasts develop a large extracellular matrix which contains significant amounts of heparan sulfate. Consequently, the placenta becomes a potential storage site for large amounts of sFlt-1 bound to extracellular heparan sulfate. Additionally, it should be noted that sFlt-1 can bind to the anticoagulant unfractionated heparin due to its molecular mimicry to heparan sulfate. However, it remains unknown whether unfractionated heparin can compete with heparan sulfate for binding of localized sFlt-1. In this study, we hypothesized that administration of unfractionated heparin would displace and solubilize placental extracellular matrix(ECM)-bound sFlt-1. If unfractionated heparin can displace this large reservoir of sFlt-1 in the placenta and mobilized it into the maternal circulation, we should be able to observe its effects on maternal angiogenic balance and blood pressure. To test this hypothesis, we utilized in vitro, ex vivo, and in vivo methods. Using the BeWo placental trophoblast cell line, we observed increased sFlt-1 in the media of cells treated with unfractionated heparin compared to controls. The increase in media sFlt-1 was found in conjunction with decreased localized cellular Flt (sFlt-1 and Flt-1) as measured by total cell fluorescence. Similar results were observed using ex vivo placental villous explants treated with unfractionated heparin. Real-time quantitative PCR of the explants showed no change in sFlt-1 or heparanase-1 mRNA expression, eliminating increased production and enzymatic cleavage of heparan sulfate as causes for sFlt-1 media increase. Timed-pregnant rats given a continuous infusion of unfractionated heparin exhibited an increased mean arterial pressure as well as decreased bioavailable VEGF compared to vehicle-treated animals. These data demonstrate that chronic unfractionated heparin treatment is able to displace matrix-bound sFlt-1 into the maternal circulation to such a degree that mean arterial pressure is significantly affected. Here we have shown that the placental ECM is a storage site for large quantities of sFlt-1, and that it should be carefully considered in future studies concerning angiogenic balance in pregnancy.
Collapse
Affiliation(s)
- Kyle H Moore
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Heather Chapman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
5
|
Oludare G, Jinadu H, Aro O. L-arginine attenuates blood pressure and reverses the suppression of angiogenic risk factors in a rat model of preeclampsia. PATHOPHYSIOLOGY 2018; 25:389-395. [DOI: 10.1016/j.pathophys.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/20/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022] Open
|
6
|
Eddy AC, Bidwell GL, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ 2018; 9:36. [PMID: 30144822 PMCID: PMC6109337 DOI: 10.1186/s13293-018-0195-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a pregnancy-induced hypertensive disorder resulting from abnormal placentation, which causes factors such as sFlt-1 to be released into the maternal circulation. Though anti-hypertensive drugs and magnesium sulfate can be given in an effort to moderate symptoms, the syndrome is not well controlled. A hallmark characteristic of preeclampsia, especially early-onset preeclampsia, is angiogenic imbalance resulting from an inappropriately upregulated sFlt-1 acting as a decoy receptor binding vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), reducing their bioavailability. Administration of sFlt-1 leads to a preeclamptic phenotype, and several models of preeclampsia also have elevated levels of plasma sFlt-1, demonstrating its role in driving the progression of this disease. Treatment with either VEGF or PlGF has been effective in attenuating hypertension and proteinuria in multiple models of preeclampsia. VEGF, however, may have overdose toxicity risks that have not been observed in PlGF treatment, suggesting that PlGF is a potentially safer therapeutic option. This review discusses angiogenic balance as it relates to preeclampsia and the studies which have been performed in order to alleviate the imbalance driving the maternal syndrome.
Collapse
Affiliation(s)
- Adrian C Eddy
- Department of Physiology and Biophysics, 2500 N State St, Jackson, MS, 39216, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, 2500 N State St, Jackson, MS, 39216, USA.,Department of Neurology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Eric M George
- Department of Physiology and Biophysics, 2500 N State St, Jackson, MS, 39216, USA. .,Department of Cell and Molecular Biology, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
7
|
Lémery Magnin M, Fitoussi V, Siauve N, Pidial L, Balvay D, Autret G, Cuenod CA, Clément O, Salomon LJ. Assessment of Placental Perfusion in the Preeclampsia L-NAME Rat Model with High-Field Dynamic Contrast-Enhanced MRI. Fetal Diagn Ther 2018; 44:277-284. [PMID: 29689556 DOI: 10.1159/000484314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/14/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE To evaluate placental function and perfusion in a rat model of preeclampsia infused with L-nitro-arginine methyl ester (L-NAME) by dynamic contrast-enhanced (DCE) MRI using gadolinium chelates. METHODS Pregnant female Sprague-Dawley rats were fitted on embryonic day 16 (E16) with subcutaneous osmotic minipumps loaded to deliver, continuously, L-NAME (50 mg/day per rat; case group) or saline solution (control group). DCE MRI was performed on E19 using gadolinium chelates and a 4.7-T MRI apparatus for small animals. Quantitative analysis was performed using an image software program: placental blood flow (perfusion in mL/min/100 mL of placenta) and fractional volume of the maternal vascular placental compartment (ratio between the placental blood volume and the placental volume, Vb in %) were calculated by compartmental analysis. RESULTS A total of 176 placentas (27 rats) were analyzed by DCE MRI (97 cases and 79 controls). The model was effective, inducing intrauterine growth retardation, as there was a significant difference between the two groups for placental weight (p < 0.01), fetal weight (p = 0.019), and fetal length (p < 0.01). There was no significant difference in placental perfusion between the L-NAME and control groups (140.1 ± 74.1 vs. 148.9 ± 97.4, respectively; p = 0.496). There was a significant difference between the L-NAME and control groups for Vb (53 ± 12.9 vs. 46.7 ± 9%, respectively; p < 0.01). CONCLUSION In the L-NAME preeclampsia model, placental perfusion is normal and the fractional blood volume is increased, suggesting that preeclampsia is not always expressed as a result of decreased placental perfusion. This highlights the usefulness of MRI for investigating the physiopathology of preeclampsia.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Balvay
- Small Animal Imaging Platform, Faculté de Médecine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Gwennhael Autret
- Small Animal Imaging Platform, Faculté de Médecine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | | | | | - Laurent Julien Salomon
- INSERM UMR 970, PARCC-HEGP, Paris, .,Gynécologie Obstétrique, Hôpital Necker Enfants Malades, AP-HP, Faculté de Médecine, Université Paris Descartes Sorbonne Paris Cité, Paris, .,EHU Fetus and Lumière Platform, Université Paris Descartes, Paris,
| |
Collapse
|
8
|
Review: Potential druggable targets for the treatment of early onset preeclampsia. Pregnancy Hypertens 2013; 3:203-10. [DOI: 10.1016/j.preghy.2013.04.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 04/29/2013] [Indexed: 12/29/2022]
|
9
|
Hepatoprotective and anti-inflammatory effects of silibinin on experimental preeclampsia induced by l-NAME in rats. Life Sci 2012; 91:159-65. [DOI: 10.1016/j.lfs.2012.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 05/31/2012] [Accepted: 06/25/2012] [Indexed: 11/23/2022]
|
10
|
Abstract
The cardinal features of human pre-eclampsia, hypertension and proteinuria, are mimicked in animal models. Increasingly, the accuracy of inducing 'pure' systemic endothelial dysfunction is regarded as critical in differentiating mechanisms of pre-eclampsia from other conditions which induce hypertension (e.g. glomerulonephritis, renal denervation or manipulation of the renin-angiotensin system). A recent study in baboons has identified the timing of induction of maternal endothelial damage after acute uteroplacental ischaemia (UPI). The endothelial changes in the glomerulus are indicative of a direct endothelial toxin and mimic the lesions seen in human pre-eclampsia; the extent of hypertension and proteinuria are also similar. This animal model identifies systemic and placental sFLT-1 (soluble fms-like tyrosine kinase-1) as a potential mediator of endothelial damage. This research involving primates with haemomonochorial placentas makes translation of these results to humans very compelling for understanding the mechanisms of human disease. Similar endothelial dysfunction has been identified in baboons treated with anti-inflammatory inhibitors. Similar studies in rodents have identified a relationship between angiotensin II agonistic antibodies, UPI/reduced uteroplacental perfusion pressure, angiogenic markers, and cytokines. We can now identify vasoconstrictive mediators of the hypertensive and endothelial response such as endothelin 1, the renin-angiotensin system, or other hormones such as oestrogens in primate models.
Collapse
|
11
|
Ramesar SV, Mackraj I, Gathiram P, Moodley J. Sildenafil citrate decreases sFlt-1 and sEng in pregnant l-NAME treated Sprague-Dawley rats. Eur J Obstet Gynecol Reprod Biol 2011; 157:136-40. [PMID: 21481522 DOI: 10.1016/j.ejogrb.2011.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 02/01/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We have previously shown that sildenafil citrate improves various fetal outcomes in pregnant, L-NAME treated, Sprague-Dawley rats. We therefore aimed to identify which component/s of this diverse pathophysiologic cascade is/are improved by this drug. STUDY DESIGN This study is a sub-analysis of plasma samples obtained in a previous study in which 24 pregnant Sprague-Dawley dams were divided into three groups (n=8) i.e. the control group (CON), the experimental control group (PRE) where the pre-eclampsia-like symptoms were induced using l-NAME, and the experimental group (SCT) where the pre-eclampsia-like symptoms were once again induced using L-NAME but these animals were treated with sildenafil citrate. On gestation day 20 blood samples were collected in heparin-coated tubes and plasma samples were then analysed for specific variables using commercially available kits for rats. RESULTS There was a significant increase in the plasma levels of soluble fms-like tyrosine kinase1 (sFlt-1) in the PRE group (1228.80±116.29 pg/ml) when compared to the CON (774.91±26.81 pg/ml) and SCT (698.98±20.78 pg/ml) groups, respectively (p<0.001). The plasma levels of soluble endoglin (sEng) were significantly decreased in the SCT group (149.47±3.72 ng/ml) when compared to the CON (178.52±5.33 ng/ml) and PRE (183.44±8.294 ng/ml) groups, respectively (p<0.01). Plasma nitric oxide and l-arginine levels showed a decreasing trend in the PRE groups when compared to the control (CON) and treated (SCT) groups, respectively. CONCLUSION Sildenafil citrate reduces the plasma levels of anti-angiogenic factors, sFlt-1 and sEng, in pre-eclamptic (L-NAME induced) Sprague-Dawley rats and may therefore be responsible for the reduction in blood pressure and proteinuria as well as the improved fetal outcomes noted in an earlier study.
Collapse
Affiliation(s)
- S V Ramesar
- Department of Physiology and Physiological Chemistry, University of Kwa Zulu-Natal, Durban, South Africa.
| | | | | | | |
Collapse
|
12
|
Fruscalzo A, Bertozzi S, Londero AP, Biasioli A, Driul L, Kiesel L, Marchesoni D. Menstrual abnormalities and predisposition to pregnancy-related hypertensive disorders: a retrospective study. Gynecol Endocrinol 2010; 26:445-50. [PMID: 20170353 DOI: 10.3109/09513591003632092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Pregnancy-related hypertensive disorders (PRHDs) are a leading cause of maternal and perinatal morbidity and mortality in developed countries. This study investigated a possible association of PRHDs with menstrual abnormalities. MATERIALS AND METHODS We contacted all women with PRHDs who delivered in our clinic between 2004 and 2007 as well as a random control cohort without pregnancy complications and asked them about their menstrual cycle characteristics. Statistical analyses were performed using R, with significance set at p < 0.05. RESULTS We collected data for 237 women with normal pregnancies and 255 women with PRHDs, among whom 143 had gestational hypertension and 70 had mild and 41 severe preeclampsia. By monovariate analysis, PRHDs correlated with dysmenorrhoea, hypermenorrhoea and menstrual irregularity (p < 0.05). By multivariate analysis, the occurrence of PRHDs was influenced by dysmenorrhoea and menstrual irregularity (p < 0.05). CONCLUSIONS PRHDs usually affect women with painful or irregular menstrual cycles, perhaps due to metabolic syndrome or molecular pathways involving vasoactive substances, with clear vascular implications.
Collapse
|
13
|
Lambert-Messerlian GM, Palomaki GE, Neveux LM, Chien E, Friedman A, Rosene-Montella K, Hayes M, Canick JA. Early onset preeclampsia and second trimester serum markers. Prenat Diagn 2009; 29:1109-17. [DOI: 10.1002/pd.2387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|