1
|
Bari Ö, Sabancı AÜ, Avci G, Bozkurt B, Üstüner B, Denk B, Özalp GR. Canine oocyte nuclear maturation with Nano-ozone (NZS) supplementation: The alterations of antioxidant, and oxidant status and CDK1, cyclin B1 expressions. Reprod Biol 2024; 24:100929. [PMID: 39154626 DOI: 10.1016/j.repbio.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
This study aims to evaluate the effects of nano-ozone solution (NZS) on canine oocyte nuclear maturation, associated with the alterations of antioxidant and oxidant status and cyclin-dependent kinase 1 (CDK1), cyclin B1 gene expressions. Oocytes were cultured in four distinct concentrations of NZS (0.5, 1, 2, and 5 µg/mL) and parthenogenetically activated. The rates of oocytes arrested at the Germinal Vesicle (GV), Germinal Vesicle Breakdown (GVBD), Metaphase I (MI), and Metaphase II (MII) stages were statistically different among groups (P < 0.05). The oocytes cultured in 1 µg/mL NZS yielded the best oocyte maturation rate at the MI and MII stages; however, the lowest maturation and high degeneration rates were observed in Group E. The measurements of Malondialdehyde (MDA), reduced Glutathione (GSH), Superoxide Dismutase (SOD), and Ferric Reducing/Antioxidant Power assay (FRAP) were performed from IVM culture media. No statistical difference was observed in SOD and MDA results (P > 0.05). GSH levels were statistically significant between Group A-Group E (p = 0.003), Group B-Group E (p = 0.045), and Group E-Group D (p = 0.021). The culture media in Group D and Group E had high FRAP concentrations and significantly differed between groups (P < 0.05). CDK1, and cyclin B1 genes, which are subunits of maturation-promoting factor (MPF), are upregulated in Group B and Group C, while are downregulated in oocytes of Group E. This study showed that low, controlled doses of NZS (1 µg/mL) supplementation could improve the meiotic competence of canine oocytes and lead to positive response in expressions of CDK1 and cyclin B1 on the gene level.
Collapse
Affiliation(s)
- Ö Bari
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - A Ü Sabancı
- Bursa Çekirge State Hospital, Orthopedics and Traumatology Clinic, Bursa, Türkiye
| | - G Avci
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - B Bozkurt
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - B Üstüner
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - B Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - G R Özalp
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
2
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Reactive oxygen species signalling in the deterioration of quality of mammalian oocytes cultured in vitro: Protective effect of antioxidants. Cell Signal 2024; 117:111103. [PMID: 38367792 DOI: 10.1016/j.cellsig.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The in vitro fertilization (IVF) is the first choice of infertile couples worldwide to plan for conception. Besides having a significant advancement in IVF procedure, the success rate is still poor. Although several approaches have been tested to improve IVF protocol, minor changes in culture conditions, physical factors and/or drug treatment generate reactive oxygen species (ROS) in oocytes. Due to large size and huge number of mitochondria, oocyte is more susceptible towards ROS-mediated signalling under in vitro culture conditions. Elevation of ROS levels destabilize maturation promoting factor (MPF) that results in meiotic exit from diplotene as well as metaphase-II (M-II) arrest in vitro. Once meiotic exit occurs, these oocytes get further arrested at metaphase-I (M-I) stage or metaphase-III (M-III)-like stage under in vitro culture conditions. The M-I as well as M-III arrested oocytes are not fit for fertilization and limits IVF outcome. Further, the generation of excess levels of ROS cause oxidative stress (OS) that initiate downstream signalling to initiate various death pathways such as apoptosis, autophagy, necroptosis and deteriorates oocyte quality under in vitro culture conditions. The increase of cellular enzymatic antioxidants and/or supplementation of exogenous antioxidants in culture medium protect ROS-induced deterioration of oocyte quality in vitro. Although a growing body of evidence suggests the ROS and OS-mediated deterioration of oocyte quality in vitro, their downstream signalling and related mechanisms remain poorly understood. Hence, this review article summarizes the existing evidences concerning ROS and OS-mediated downstream signalling during deterioration of oocyte quality in vitro. The use of various antioxidants against ROS and OS-mediated impairment of oocyte quality in vitro has also been explored in order to increase the success rate of IVF during assisted reproductive health management.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Zhang XJ, Diao MN, Zhang YF. A review of the occurrence, metabolites and health risks of butylated hydroxyanisole (BHA). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6150-6166. [PMID: 37127924 DOI: 10.1002/jsfa.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/03/2023]
Abstract
Butylated hydroxyanisole (BHA) is mainly used as a food additive due to its antioxidant properties, which prevent or delay oxidation reactions and extend the storage life of products. The widespread use of BHA has led to its extensive presence in various environmental matrices and human tissues. Food intake is the main route of human exposure to BHA. Under different conditions, BHA can produce different metabolites, with tert-butyl hydroquinone (TBHQ) being one of the major products. Several studies have shown that BHA could cause thyroid system damage, metabolic and growth disorders, neurotoxicity, and carcinogenesis. Mechanisms such as endocrine disruption, genotoxicity, disturbances of energy metabolism, reactive oxygen species (ROS) production, signaling pathways, and imbalances in calcium homeostasis appear to be associated with the toxic effects of BHA. Avoiding the toxic effects of BHA to the maximum extent possible is a top priority. Finding safe, non-toxic and environmentally friendly alternatives to BHA should be the focus of subsequent research. In all, this review summarized the current situation related to BHA and might make recommendations for future research directions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mei-Ning Diao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Effect of carvacrol antioxidant capacity on oocyte maturation and embryo production in cattle. ZYGOTE 2023; 31:173-179. [PMID: 36804925 DOI: 10.1017/s0967199422000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Carvacrol (C10H14O), an efficient phenolic antioxidant substance for several cell types, may become a useful antioxidant for female germ cells and embryo culture. This study investigates the effects of carvacrol supplementation on bovine oocytes in in vitro maturation (IVM) and embryo production. In total, 1222 cumulus-oocyte complexes were cultured in TCM-199+ alone (control treatment) or supplemented with carvacrol at the concentrations of 3 µM (Carv-3), 12.5 µM (Carv-12.5), or 25 µM (Carv-25). After IVM, the oocytes were subjected to in vitro fertilization and embryo production, and the spent medium post-IVM was used for evaluating the levels of reactive oxygen species and the antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate and 2,2'-azinobis-3-ethyl-benzothiozoline-6-sulphonic acid quantification). A greater (P < 0.05) antioxidant potential was observed in the spent medium of all carvacrol-treated groups compared with the control medium. Moreover, the addition of carvacrol to the maturation medium did not affect (P > 0.05) blastocyst production on days 7 and 10 of culture; however, the total number of cells per blastocyst was reduced (P < 0.05) in two carvacrol-treated groups (Carv-3 and Carv-25). In conclusion, carvacrol demonstrated a high antioxidant capacity in the spent medium after oocyte maturation; however, although embryo production was not affected, in general, carvacrol addition to IVM medium reduced the total number of cells per blastocyst. Therefore, due to the high antioxidant capacity of carvacrol, new experiments are warranted to investigate the beneficial effects of lower concentrations of carvacrol on embryo production in cattle and other species.
Collapse
|
5
|
Niu D, Chen KL, Wang Y, Li XQ, Liu L, Ma X, Duan X. Hexestrol Deteriorates Oocyte Quality via Perturbation of Mitochondrial Dynamics and Function. Front Cell Dev Biol 2021; 9:708980. [PMID: 34295902 PMCID: PMC8290218 DOI: 10.3389/fcell.2021.708980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Hexestrol (HES) is a synthetic non-steroidal estrogen that was widely used illegally to boost the growth rate in livestock production and aquaculture. HES can also be transferred to humans from treated animals and the environment. HES has been shown to have an adverse effect on ovarian function and oogenesis, but the potential mechanism has not been clearly defined. To understand the potential mechanisms regarding how HES affect female ovarian function, we assessed oocyte quality by examining the critical events during oocyte maturation. We found that HES has an adverse effect on oocyte quality, indicated by the decreased capacity of oocyte maturation and early embryo development competency. Specifically, HES-exposed oocytes exhibited aberrant microtubule nucleation and spindle assembly, resulting in meiotic arrest. In addition, HES exposure disrupted mitochondrial distribution and the balance of mitochondrial fission and fusion, leading to aberrant mitochondrial membrane potential and accumulation of reactive oxygen species. Lastly, we found that HES exposure can increase cytosolic Ca2+ levels and induce DNA damage and early apoptosis. In summary, these results demonstrate that mitochondrial dysfunction and perturbation of normal mitochondrial fission and fusion dynamics could be major causes of reduced oocyte quality after HES exposure.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Kun-Lin Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiao-Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Modulation of Intracellular ROS and Senescence-Associated Phenotypes of Xenopus Oocytes and Eggs by Selective Antioxidants. Antioxidants (Basel) 2021; 10:antiox10071068. [PMID: 34356301 PMCID: PMC8301133 DOI: 10.3390/antiox10071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Aging of oocytes and eggs diminishes their reproductive and developmental potential. It has been demonstrated previously that reactive oxygen species (ROS) contribute to accelerated aging of various cells. In the present study, we measured intracellular levels of ROS and investigated effects of several selective antioxidants (AOXs) on the viability and functional activity of aging oocytes and eggs of the African clawed frog Xenopus laevis. The fluorescent cell-permeable dye DCFDA, which is widely employed for ROS detection in cultured mammalian cells, was used to monitor ROS levels in the fresh and bench-aged oocytes and eggs by an optimized protocol. It was found that intracellular ROS contents were increased in frog oocytes and eggs aged for 48 h. It was further demonstrated using selective cell-permeable AOXs targeting different ROS-generating mechanisms, that the major source of ROS in Xenopus oocytes and eggs is the plasma membrane NADPH oxidase, and that mitochondrial generation contributes to the intracellular ROS content to a lesser extent. Targeted inhibition of NADPH oxidase with a natural organic compound apocynin reduced ROS levels significantly in Xenopus oocytes and eggs, maintained their normal phenotype and supported their functional competence. To our knowledge this is the first report concerning beneficial effects of apocynin on the isolated gamete cells, such as oocytes and eggs.
Collapse
|
7
|
Zhang Z, Mu Y, Ding D, Zou W, Li X, Chen B, Leung PC, Chang HM, Zhu Q, Wang K, Xue R, Xu Y, Zou H, Zhou P, Wei Z, Cao Y. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. J Pineal Res 2021; 70:e12707. [PMID: 33274466 DOI: 10.1111/jpi.12707] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Cryopreservation causes cryoinjury to oocytes and impairs their developmental competence. Melatonin (MLT) can improve the effect of cryopreservation in animal oocytes. However, no such studies on human oocytes have been reported. In this study, collected in vitro-matured human oocytes were randomly divided into the following groups: fresh group, MLT-treated cryopreservation (MC) group, and no-MLT-treated cryopreservation (NC) group. After vitrification and warming, viable oocytes from these three groups were assessed for their mitochondrial function, ultrastructure, permeability of oolemma, early apoptosis, developmental competence, and cryotolerance-related gene expression. First, fluorescence staining results revealed that oocytes from the 10-9 M subgroup showed the lowest intracellular reactive oxygen species and Ca2+ levels and highest mitochondrial membrane potential among the MC subgroups (10-11 , 10-9 , 10-7 , and 10-5 M). In subsequent experiments, oocytes from the 10-9 M-MC group were observed to maintain the normal ultrastructural features and the permeability of the oolemma. Compared with those of the oocytes in the NC group, the early apoptosis rate significantly decreased (P < .01), whereas both the high-quality cleavage embryo and blastocyst rates significantly increased (both P < .05) in the oocytes of the 10-9 M-MC group. Finally, single-cell RNA sequencing and immunofluorescence results revealed that aquaporin (AQP) 1/2/11 gene expression and AQP1 protein expression were upregulated in the MC group. Therefore, these results suggest that MLT can improve the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaoqin Mu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Ding Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Peter Ck Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Zhu
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Kaijuan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| |
Collapse
|
8
|
Fazeli E, Hosseini A, Heidari MH, Farifteh-Nobijari F, Salehi M, Abbaszadeh HA, Nazarian H, Shams Mofarahe Z, Ayoubi S, Hosseini S, Shayeghpour M, Bandehpour M, Ghaffari Novin M. Meiosis Resumption of Immature Human Oocytes following Treatment with Calcium Ionophore In Vitro. CELL JOURNAL 2021; 23:109-118. [PMID: 33650827 PMCID: PMC7944122 DOI: 10.22074/cellj.2021.7130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 11/10/2022]
Abstract
Objective: In vitro maturation (IVM) of human oocytes is used to induce meiosis progression in immature retrieved
oocytes. Calcium (Ca2+) has a central role in oocyte physiology. Passage through meiosis phase to another phase
is controlled by increasing intracellular Ca2+. Therefore, the current research was conducted to evaluate the role of
calcium ionophore (CI) on human oocyte IVM. Materials and Methods: In this clinical trial study, immature human oocytes were obtained from 216 intracytoplasmic
sperm injection (ICSI) cycles. After ovarian stimulation, germinal vesicle (GV) stage oocytes were collected and
categorized into two groups: with and without 10 µM CI treatment. Next, oocyte nuclear maturation was assessed after
24–28 hours of culture. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to assess the
transcript profile of several oocyte maturation-related genes (MAPK3, CCNB1, CDK1, and cyclin D1 [CCND1]) and
apoptotic-related genes (BCL-2, BAX, and Caspase-3). Oocyte glutathione (GSH) and reactive oxygen species (ROS)
levels were assessed using Cell Tracker Blue and 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescent
dye staining. Oocyte spindle configuration and chromosome alignment were analysed by immunocytochemistry. Results: The metaphase II (MII) oocyte rate was higher in CI‐treated oocytes (73.53%) compared to the control
(67.43%) group, but this difference was not statistically significant (P=0.13). The mRNA expression profile of oocyte
maturation-related genes (MAPK3, CCNB1, CDK1, and CCND1) (P<0.05) and the anti-apoptotic BCL-2 gene was
remarkably up-regulated after treatment with CI (P=0.001). The pro-apoptotic BAX and Caspase-3 relative expression
levels did not change significantly. The CI‐treated oocyte cytoplasm had significantly higher GSH and lower ROS
(P<0.05). There was no statistically significant difference in meiotic spindle assembly and chromosome alignment
between CI treatment and the control group oocytes. Conclusion: The finding of the current study supports the role of CI in meiosis resumption of human oocytes.
(Registration Number: IRCT20140707018381N4)
Collapse
Affiliation(s)
- Elham Fazeli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Hosseini
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad-Hasan Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fattaneh Farifteh-Nobijari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Genetics and In Vitro Assisted Reproductive (GIVAR) Center, Erfan Hospital, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran Iran
| | - Hojjat-Allah Abbaszadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Ayoubi
- Infertility and Reproductive Health Research Centre, Sara Hospital, Tehran, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Shayeghpour
- Genetics and In Vitro Assisted Reproductive (GIVAR) Center, Erfan Hospital, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Meiotic Instability Generates a Pathological Condition in Mammalian Ovum. Stem Cell Rev Rep 2020; 17:777-784. [PMID: 33140233 DOI: 10.1007/s12015-020-10072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 02/02/2023]
Abstract
Maintenance of metaphase-II (M-II) arrest in ovum is required to present itself as a right gamete for successful fertilization in mammals. Surprisingly, instability of meiotic cell cycle results in spontaneous exit from M-II arrest, chromosomal scattering and incomplete extrusion of second polar body (PB-II) without forming pronuclei so called abortive spontaneous ovum activation (SOA). It remains unclear what causes meiotic instability in freshly ovulated ovum that results in abortive SOA. We propose the involvement of various signal molecules such as reactive oxygen species (ROS), cyclic 3',5' adenosine monophosphate (cAMP) and calcium (Ca2+) in the induction of meiotic instability and thereby abortive SOA. These signal molecules through their downstream pathways modulate phosphorylation status and activity of cyclin dependent kinase (cdk1) as well as cyclin B1 level. Changes in phosphorylation status of cdk1 and its activity, dissociation and degradation of cyclin B1 destabilize maturation promoting factor (MPF). The premature MPF destabilization and defects in other cell cycle regulators possibly cause meiotic instability in ovum soon after ovulation. The meiotic instability results in a pathological condition of abortive SOA and deteriorates ovum quality. These ova are unfit for fertilization and limit reproductive outcome in several mammalian species including human. Therefore, global attention is required to identify the underlying causes in greater details in order to address the problem of meiotic instability in ova of several mammalian species icluding human. Moreover, these activated ova may be used to create parthenogenetic embryonic stem cell lines in vitro for the use in regenerative medicine.Graphical abstract.
Collapse
|
10
|
Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, Sahu K, Pandey AN, Pandey AK, Chaube SK. Necrosis and necroptosis in germ cell depletion from mammalian ovary. J Cell Physiol 2018; 234:8019-8027. [PMID: 30341907 DOI: 10.1002/jcp.27562] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The maximum number of germ cells is present during the fetal life in mammals. Follicular atresia results in rapid depletion of germ cells from the cohort of the ovary. At the time of puberty, only a few hundred (<1%) germ cells are either culminated into oocytes or further get eliminated during the reproductive life. Although apoptosis plays a major role, necrosis as well as necroptosis, might also be involved in germ cell elimination from the mammalian ovary. Both necrosis and necroptosis show similar morphological features and are characterized by an increase in cell volume, cell membrane permeabilization, and rupture that lead to cellular demise. Necroptosis is initiated by tumor necrosis factor and operated through receptor interacting protein kinase as well as mixed lineage kinase domain-like protein. The acetylcholinesterase, cytokines, starvation, and oxidative stress play important roles in necroptosis-mediated granulosa cell death. The granulosa cell necroptosis directly or indirectly induces susceptibility toward necroptotic or apoptotic cell death in oocytes. Indeed, prevention of necrosis and necroptosis pathways using their specific inhibitors could enhance growth/differentiation factor-9 expression, improve survivability as well as the meiotic competency of oocytes, and prevent decline of reproductive potential in several mammalian species and early onset of menopause in women. This study updates the information and focuses on the possible involvement of necrosis and necroptosis in germ cell depletion from the mammalian ovary.
Collapse
Affiliation(s)
- Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Kankshi Sahu
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Dynamic redox balance directs the oocyte-to-embryo transition via developmentally controlled reactive cysteine changes. Proc Natl Acad Sci U S A 2018; 115:E7978-E7986. [PMID: 30082411 PMCID: PMC6112717 DOI: 10.1073/pnas.1807918115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The metabolic and redox state changes during the transition from an arrested oocyte to a totipotent embryo remain uncharacterized. Here, we applied state-of-the-art, integrated methodologies to dissect these changes in Drosophila We demonstrate that early embryos have a more oxidized state than mature oocytes. We identified specific alterations in reactive cysteines at a proteome-wide scale as a result of this metabolic and developmental transition. Consistent with a requirement for redox change, we demonstrate a role for the ovary-specific thioredoxin Deadhead (DHD). dhd-mutant oocytes are prematurely oxidized and exhibit meiotic defects. Epistatic analyses with redox regulators link dhd function to the distinctive redox-state balance set at the oocyte-to-embryo transition. Crucially, global thiol-redox profiling identified proteins whose cysteines became differentially modified in the absence of DHD. We validated these potential DHD substrates by recovering DHD-interaction partners using multiple approaches. One such target, NO66, is a conserved protein that genetically interacts with DHD, revealing parallel functions. As redox changes also have been observed in mammalian oocytes, we hypothesize a link between developmental control of this cell-cycle transition and regulation by metabolic cues. This link likely operates both by general redox state and by changes in the redox state of specific proteins. The redox proteome defined here is a valuable resource for future investigation of the mechanisms of redox-modulated control at the oocyte-to-embryo transition.
Collapse
|
12
|
Melatonin Scavenger Properties against Oxidative and Nitrosative Stress: Impact on Gamete Handling and In Vitro Embryo Production in Humans and Other Mammals. Int J Mol Sci 2017; 18:ijms18061119. [PMID: 28613231 PMCID: PMC5485943 DOI: 10.3390/ijms18061119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 11/17/2022] Open
Abstract
Oxidative and nitrosative stress are common problems when handling gametes in vitro. In vitro development in mammalian embryos is highly affected by culture conditions, especially by reactive oxygen species (ROS) and reactive nitrogen species (RNS), because their absence or overproduction causes embryo arrest and changes in gene expression. Melatonin in gamete co-incubation during in vitro fertilization (IVF) has deleterious or positive effects, depending on the concentration used in the culture medium, demonstrating the delicate balance between antioxidant and pro-oxidant activity. Further research is needed to better understand the possible impact of melatonin on the different IVP steps in humans and other mammals, especially in seasonal breeds where this neuro-hormone system highly regulates its reproduction physiology.
Collapse
|
13
|
Abortive Spontaneous Egg Activation: An Emerging Biological Threat for the Existence of Mammals. Cell Reprogram 2017; 19:145-149. [DOI: 10.1089/cell.2016.0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
14
|
Khazaei M, Aghaz F. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 11:63-70. [PMID: 28670422 PMCID: PMC5347452 DOI: 10.22074/ijfs.2017.4995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/09/2016] [Indexed: 11/04/2022]
Abstract
In vitro maturation (IVM) is emerging as a popular technology at the forefront of fertility treatment and preservation. However, standard in vitro culture (IVC) conditions usually increase reactive oxygen species (ROS), which have been implicated as one of the major causes for reduced embryonic development. It is well-known that higher than physiological levels of ROS trigger granulosa cell apoptosis and thereby reduce the transfer of nutrients and survival factors to oocytes, which leads to apoptosis. ROS are neutralized by an elaborate defense system that consists of enzymatic and non-enzymatic antioxidants. The balance between ROS levels and antioxidants within IVM media are important for maintenance of oocytes that develop to the blastocyst stage. The effects of antioxidant supplementation of IVM media have been studied in various mammalian species. Therefore, this article reviews and summarizes the effects of ROS on oocyte quality and the use of antioxidant supplementations for IVM, in addition to its effects on maturation rates and further embryo development.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Kala M, Shaikh MV, Nivsarkar M. Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Reprod Med Biol 2016; 16:28-35. [PMID: 29259447 PMCID: PMC5715868 DOI: 10.1002/rmb2.12013] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/28/2016] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species (ROS) are required for cellular functioning and are controlled by anti‐oxidants. The ROS influence the follicles, oocytes, endometrium, and their environment. The luteinizing hormone surge initiates a massive recruitment of ROS that modulates major reproductive functions namely, oocyte maturation, ovarian steroidogenesis, corpus luteal function, and luteolysis. The anti‐oxidant system balances ROS generation and maintains the cellular functions. Both enzymatic and non‐enzymatic anti‐oxidants namely, vitamins and minerals are present in the follicles and protect the oocytes from the damaging effects of ROS. The overproduction of ROS leads to oxidative stress that affects the quality of oocytes and subsequent anovulation. Although researchers have tried to establish the role of ROS and anti‐oxidants in oocyte development, still this aspect needs to be revisited. This review discusses the importance of the ROS and anti‐oxidant balance that is required for the development and maturation of oocytes. There are increasing data on the activity of ROS and anti‐oxidants in supporting oocyte development and maturation. However, extensive research is required to identify the safe physiological concentration and duration of both the ROS and anti‐oxidants that are required to facilitate oocyte development and maturation during in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Manika Kala
- Department of Pharmacology and Toxicology B. V. Patel Pharmaceutical Education and Research Development Centre Ahmedabad India.,Faculty of Pharmacy NIRMA University Ahmedabad India
| | - Muhammad Vaseem Shaikh
- Department of Pharmacology and Toxicology B. V. Patel Pharmaceutical Education and Research Development Centre Ahmedabad India.,Faculty of Pharmacy NIRMA University Ahmedabad India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology B. V. Patel Pharmaceutical Education and Research Development Centre Ahmedabad India
| |
Collapse
|
16
|
Tiwari M, Prasad S, Shrivastav TG, Chaube SK. Calcium Signaling During Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. J Cell Physiol 2016; 232:976-981. [PMID: 27791263 DOI: 10.1002/jcp.25670] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
Abstract
Calcium (Ca++ ) is one of the major signal molecules that regulate various aspects of cell functions including cell cycle progression, arrest, and apoptosis in wide variety of cells. This review summarizes current knowledge on the differential roles of Ca++ in meiotic cell cycle resumption, arrest, and apoptosis in mammalian oocytes. Release of Ca++ from internal stores and/or Ca++ influx from extracellular medium causes moderate increase of intracellular Ca++ ([Ca++ ]i) level and reactive oxygen species (ROS). Increase of Ca++ as well as ROS levels under physiological range trigger maturation promoting factor (MPF) destabilization, thereby meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in oocytes. A sustained increase of [Ca++ ]i level beyond physiological range induces generation of ROS sufficient enough to cause oxidative stress (OS) in aging oocytes. The increased [Ca++ ]i triggers Fas ligand-mediated oocyte apoptosis. Further, OS triggers mitochondria-mediated oocyte apoptosis in several mammalian species. Thus, Ca++ exerts differential roles on oocyte physiology depending upon its intracellular concentration. A moderate increase of [Ca++ ]i as well as ROS mediate spontaneous resumption of meiosis from diplotene as well as M-II arrest, while their high levels cause meiotic cell cycle arrest and apoptosis by operating both mitochondria- as well as Fas ligand-mediated apoptotic pathways. Indeed, Ca++ regulates cellular physiology by modulating meiotic cell cycle and apoptosis in mammalian oocytes. J. Cell. Physiol. 232: 976-981, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
17
|
Prasad S, Tiwari M, Pandey AN, Shrivastav TG, Chaube SK. Impact of stress on oocyte quality and reproductive outcome. J Biomed Sci 2016; 23:36. [PMID: 27026099 PMCID: PMC4812655 DOI: 10.1186/s12929-016-0253-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/22/2016] [Indexed: 11/10/2022] Open
Abstract
Stress is an important factor that affects physical and mental status of a healthy person disturbing homeostasis of the body. Changes in the lifestyle are one of the major causes that lead to psychological stress. Psychological stress could impact the biology of female reproduction by targeting at the level of ovary, follicle and oocyte. The increased level of stress hormone such as cortisol reduces estradiol production possibly by affecting the granulosa cell functions within the follicle, which results deterioration in oocyte quality. Adaptation of lifestyle behaviours may generate reactive oxygen species (ROS) in the ovary, which further affects female reproduction. Balance between level of ROS and antioxidants within the ovary are important for maintenance of female reproductive health. Physiological level of ROS modulates oocyte functions, while its accumulation leads to oxidative stress (OS). OS triggers apoptosis in majority of germ cells within the ovary and even in ovulated oocytes. Although both mitochondria- as well as death-receptor pathways are involved in oocyte apoptosis, OS-induced mitochondria-mediated pathway plays a major role in the elimination of majority of germ cells from ovary. OS in the follicular fluid deteriorates oocyte quality and reduces reproductive outcome. On the other hand, antioxidants reduce ROS levels and protect against OS-mediated germ cell apoptosis and thereby depletion of germ cells from the ovary. Indeed, OS is one of the major factors that has a direct negative impact on oocyte quality and limits female reproductive outcome in several mammalian species including human.
Collapse
Affiliation(s)
- Shilpa Prasad
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi, 110067, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
18
|
Premkumar KV, Chaube SK. Increased level of reactive oxygen species persuades postovulatory aging-mediated spontaneous egg activation in rat eggs cultured in vitro. In Vitro Cell Dev Biol Anim 2016; 52:576-88. [PMID: 26896066 DOI: 10.1007/s11626-016-0007-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/25/2016] [Indexed: 11/29/2022]
Abstract
The present study was aimed to find out whether increased level of reactive oxygen species (ROS) particularity hydrogen peroxide (H2O2) could persuade postovulatory aging-mediated abortive spontaneous egg activation (SEA) in rat eggs cultured in vitro. For this purpose, ROS and H2O2 levels, mitochondria distribution and its membrane potential, p286-CaMK-II, Emi2, Thr-161 phophorylated cyclin-dependent protein kinase1 (Cdk1) as well as cyclin B1 levels, in vitro effects of 3-tert-butyl-4 hydroxy anisole (BHA), pentoxifylline and dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) were analyzed during postovulatory aging-induced abortive SEA in vitro. Data of the present study suggest that postovulatory aging increased H2O2 levels, disturbed mitochondrial distribution pattern and mitochondrial membrane potential (MMP) in eggs. There was an significant increase of p286-CaMK-II level, while Emi2 level reduced significantly during egg aging in vitro. The reduced Emi2 level was associated with decreased Thr-161 phosphorylated cyclin-dependent kinase-1 (Cdk1) as well as cyclin B1 level in aged eggs that underwent abortive SEA. Further, supplementation of pentoxifylline, db-cAMP, and BHA protected postovulatory aging-mediated abortive SEA in concentration-dependent manner. These data suggest that postovulatory aging increased H2O2 levels, reduced MMP, and increased p286-CaMK-II. The increased p286-CaMK-II was associated with reduced Emi2 level and maturation-promoting factor levels during postovulatory aging-mediated abortive SEA. Drugs that elevate cAMP directly or indirectly and BHA protected postovulatory aging-mediated abortive SEA possibly by reducing ROS level in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
19
|
Tripathi A, Chaube SK. Roscovitine inhibits extrusion of second polar body and induces apoptosis in rat eggs cultured in vitro. Pharmacol Rep 2015; 67:866-74. [DOI: 10.1016/j.pharep.2015.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
|
20
|
Prasad S, Tiwari M, Koch B, Chaube SK. Morphological, cellular and molecular changes during postovulatory egg aging in mammals. J Biomed Sci 2015; 22:36. [PMID: 25994054 PMCID: PMC4440248 DOI: 10.1186/s12929-015-0143-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022] Open
Abstract
Postovulatory aging is associated with several morphological, cellular and molecular changes that deteriorate egg quality either by inducing abortive spontaneous egg activation (SEA) or by egg apoptosis. The reduced egg quality results in poor fertilization rate, embryo quality and reproductive outcome. Although postovulatory aging-induced abortive SEA has been reported in several mammalian species, the molecular mechanism(s) underlying this process remains to be elucidated. The postovulatory aging-induced morphological and cellular changes are characterized by partial cortical granules exocytosis, zona pellucida hardening, exit from metaphase-II (M-II)arrest and initiation of extrusion of second polar body in aged eggs. The molecular changes include reduction of adenosine 3',5'- cyclic monophosphate (cAMP) level, increase of reactive oxygen species (ROS) and thereby cytosolic free calcium (Ca2+) level. Increased levels of cAMP and/or ROS trigger accumulation of Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) on one hand and degradation of cyclin B1 through ubiquitin-mediated proteolysis on the other hand to destabilize maturation promoting factor (MPF). The destabilized MPF triggers postovulatory aging-induced abortive SEA and limits various assisted reproductive technologies (ARTs) outcome in several mammalian species. Use of certain drugs that can either increase cAMP or reduce ROS level would prevent postovulatory aging-induced deterioration in egg quality so that more number of good quality eggs can be made available to improve ART outcome in mammals including human.
Collapse
Affiliation(s)
- Shilpa Prasad
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Biplob Koch
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Shail K Chaube
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
21
|
|
22
|
Prasad S, Tiwari M, Tripathi A, Pandey AN, Chaube SK. Changes in signal molecules and maturation promoting factor levels associate with spontaneous resumption of meiosis in rat oocytes. Cell Biol Int 2015; 39:759-69. [PMID: 25604742 DOI: 10.1002/cbin.10444] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/13/2015] [Indexed: 11/11/2022]
Abstract
The present study was aimed to find out changes in signal molecules and maturation promoting factor (MPF) levels during meiotic cell cycle progression from diplotene and metaphase-II (M-II) arrest, a period during which oocyte achieves meiotic competency. Data suggest that high levels of adenosine 3'-5'-cyclic monophosphate (cAMP), guanosine 3'-5'-cyclic monophosphate (cGMP), and nitric oxide (NO) are associated with diplotene arrest, while reduction in their levels correlates with reduced MPF level and meiotic resumption from diplotene arrest. On the other hand, increased intracellular NO, calcium (Ca(2+) ) as well as hydrogen peroxide (H2 O2 ) levels correlate with decreased cAMP, Thr-161 phosphorylated cyclin-dependent kinase-1 (Cdk1) as well as cyclin B1 levels. The decreased Thr-161 phosphorylated Cdk1 and cyclin B1 level reduce MPF level leading to exit from M-II arrest in oocytes cultured in vitro. These data suggest that the decrease of cAMP level and increase of cytosolic free Ca(2+) as well as H2 O2 levels associate with the reduced MPF level and meiotic resumption from diplotene arrest. On the other hand, increase of NO, cGMP, Ca(2+) as well as H2 O2 levels are associated with reduced MPF and spontaneous exit from M-II arrest in rat oocytes cultured in vitro.
Collapse
Affiliation(s)
- Shilpa Prasad
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Anima Tripathi
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
23
|
Tripathi A, Chaube SK. Reduction of phosphorylated Thr-161 Cdk1 level participates in roscovitine-induced Fas ligand-mediated apoptosis in rat eggs cultured in vitro. In Vitro Cell Dev Biol Anim 2014; 51:174-82. [PMID: 25148827 DOI: 10.1007/s11626-014-9812-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/17/2014] [Indexed: 12/28/2022]
Abstract
The present study was aimed to find out whether roscovitine reduces phosphorylated Thr-161 of cyclin-dependent kinase 1 (Cdk1) level and induces egg apoptosis through Fas ligand (FasL)-mediated pathway. For this purpose, ovulated eggs were cultured in media 199 with or without various concentrations of roscovitine (0, 25, 50, 100, 200 μM) for 3 h in vitro. The morphological apoptotic changes, phosphorylation status of Cdk1, FasL concentration, caspase-8 and caspase-3 activities, and DNA fragmentation were analyzed. Data of the present study suggest that roscovitine significantly reduced Thr-161 phosphorylated Cdk1 level without altering the total level of Cdk1 and induced cytoplasmic fragmentation, a morphological apoptotic feature in a concentration-dependent manner. The roscovitine-induced cytoplasmic fragmentation was associated with increased FasL concentration. The increased FasL concentration induced caspase-8 followed by caspase-3 activities. The increased caspases activity finally induced DNA fragmentation in eggs that showed cytoplasmic fragmentation. Taken together, these results suggest that roscovitine reduced phosphorylated Thr-161 of Cdk1 level and induces apoptosis through FasL-mediated pathway in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Anima Tripathi
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
24
|
Chaube SK, Shrivastav TG, Prasad S, Tiwari M, Tripathi A, Pandey AN, Premkumar KV. Clomiphene Citrate Induces ROS-Mediated Apoptosis in Mammalian Oocytes. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojapo.2014.33006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Premkumar KV, Chaube SK. An insufficient increase of cytosolic free calcium level results postovulatory aging-induced abortive spontaneous egg activation in rat. J Assist Reprod Genet 2012; 30:117-23. [PMID: 23239129 DOI: 10.1007/s10815-012-9908-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The present study was aimed to find out whether postovulatory aging-induced abortive spontaneous egg activation (SEA) is due to insufficient increase of cytosolic free Ca(2+) level. METHODS Immature female rats (22-24 days old) were subjected to superovulation induction protocol. Eggs were collected 14, 17 and 19 h post-hCG surge to induce in vivo egg aging. The eggs were collected 14 h post-hCG surge and cultured in vitro for 3, 5 and 7 h to induce in vitro egg aging. The morphological changes, rate of abortive SEA, chromosomal status and cytosolic free Ca(2+) levels were analyzed. RESULTS Postovulatory aging induced morphological features characteristics of abortive SEA in a time-dependent manner in vivo as well as in vitro. The extracellular Ca(2+) increased rate of abortive SEA during initial period of culture, while co-addition of a nifedipine (L-type Ca(2+) channel blocker) protected against postovulatory aging-induced abortive SEA. However, CI induced morphological features characteristics of egg activation (EA) in a dose-dependent manner. As compare to control, an increase of cytosolic free Ca(2+) level (1.42 times) induced abortive SEA, while further increase of cytosolic free Ca(2+) level (2.55 times) induced EA. CONCLUSION Our results show that an insufficient cytosolic free Ca(2+) level is associated with postovulatory aging -induced abortive SEA, while furthermore increase is required to induce EA in rat.
Collapse
Affiliation(s)
- Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
26
|
High cytosolic free calcium level signals apoptosis through mitochondria-caspase mediated pathway in rat eggs cultured in vitro. Apoptosis 2012; 17:439-48. [PMID: 22311472 DOI: 10.1007/s10495-012-0702-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study was aimed to find out whether an increase of cytosolic free calcium level induces egg apoptosis through mitochondria-caspase mediated pathway. To increase cytosolic free calcium level and morphological apoptotic changes, ovulated eggs were cultured in Ca(2+)/Mg(2+) free media-199 with or without various concentrations of calcium ionophore (0.5, 1, 2, 3, 4 μM) for 3 h in vitro. The morphological apoptotic changes, cytosolic free calcium level, hydrogen peroxide (H(2)O(2)) concentration, catalase activity, cytochrome c concentration, caspase-9 and caspase-3 activities and DNA fragmentation were analyzed. Calcium ionophore induced morphological apoptotic features in a concentration-dependent manner followed by degeneration at higher concentrations (3 and 4 μM). Calcium ionophore increased cytosolic free calcium level, induced generation of hydrogen peroxide (H(2)O(2)) and inhibited catalase activity in treated eggs. The increased H(2)O(2) concentration was associated with increased cytochrome c concentration, caspase-9 and caspase-3 activities that resulted in the induction of morphological features characteristic of egg apoptosis. The increased caspase-3 activity finally induced DNA fragmentation as evidenced by TUNEL positive staining in calcium ionophore-treated eggs. These findings suggest that high cytosolic free calcium level induces generation of H(2)O(2) that leads to egg apoptosis through mitochondria-caspase mediated pathway.
Collapse
|
27
|
Tripathi A, Shrivastav TG, Chaube SK. Aqueous extract of Azadirachta indica (neem) leaf induces generation of reactive oxygen species and mitochondria-mediated apoptosis in rat oocytes. J Assist Reprod Genet 2011; 29:15-23. [PMID: 22089262 DOI: 10.1007/s10815-011-9671-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/02/2011] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Present study was aimed to determine whether aqueous neem leaf extract (NLE) induces generation of reactive oxygen species (ROS) and apoptosis through mitochondria-mediated pathway in rat oocytes. DESIGN A controlled prospective study. SETTING Laboratory research setting at Department of Zoology of Banaras Hindu University. ANIMAL(S) Forty eight sexually immature female rats that were 20-30 days of age. INTERVENTION(S) Sexually immature female rats were fed palatable dose of NLE (10 mg/g dry feed palate) for 10 days and then subjected to superovulation induction protocol. Thereafter, rats were euthanized, ovulated cumulus oocyte complexes were collected from oviduct and oocytes were denuded. MAIN OUTCOME MEASURE(S) Rate of morphological apoptotic changes, measurement of hydrogen peroxide, nitric oxide and cytochrome c concentrations, caspase-9, caspases-3 activities and DNA fragmentation in oocytes. RESULTS In vivo NLE treatment induced morphological apoptotic changes were associated with increased hydrogen peroxide, nitric oxide and cytochrome c concentrations, caspase-9, caspase-3 activities and DNA fragmentation in oocyte. CONCLUSION NLE induces generation of ROS that leads to oocytes apoptosis through mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Anima Tripathi
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
28
|
Tripathi A, PremKumar KV, Pandey AN, Khatun S, Mishra SK, Shrivastav TG, Chaube SK. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs. Eur J Pharmacol 2011; 667:419-24. [PMID: 21693115 DOI: 10.1016/j.ejphar.2011.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 05/24/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The present study was aimed to determine whether clomiphene citrate-induces generation of hydrogen peroxide in ovary, if so, whether melatonin could scavenge hydrogen peroxide and protect against clomiphene citrate-induced morphological apoptotic changes in rat eggs. For this purpose, forty five sexually immature female rats were given single intramuscular injection of 10 IU pregnant mare's serum gonadotropin for 48 h followed by single injections of 10 IU human chorionic gonadotropin and clomiphene citrate (10 mg/kg bw) with or without melatonin (20 mg/kg bw) for 16 h. The histology of ovary, ovulation rate, hydrogen peroxide concentration and catalase activity in ovary and morphological changes in ovulated eggs were analyzed. Co-administration of clomiphene citrate along with human chorionic gonadotropin significantly increased hydrogen peroxide concentration and inhibited catalase activity in ovary, inhibited ovulation rate and induced egg apoptosis. Supplementation of melatonin reduced hydrogen peroxide concentration and increased catalase activity in the ovary, delayed meiotic cell cycle progression in follicular oocytes as well as in ovulated eggs since extrusion of first polar body was still in progress even after ovulation and protected against clomiphene citrate-induced egg apoptosis. These results clearly suggest that the melatonin reduces oxidative stress by scavenging hydrogen peroxide produced in the ovary after clomiphene citrate treatment, slows down meiotic cell cycle progression in eggs and protects against clomiphene citrate-induced apoptosis in rat eggs.
Collapse
Affiliation(s)
- Anima Tripathi
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | | | | | |
Collapse
|
29
|
Pandey AN, Tripathi A, Premkumar KV, Shrivastav TG, Chaube SK. Reactive oxygen and nitrogen species during meiotic resumption from diplotene arrest in mammalian oocytes. J Cell Biochem 2011; 111:521-8. [PMID: 20568115 DOI: 10.1002/jcb.22736] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian ovary is metabolically active organ and generates by-products such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) on an extraordinary scale. Both follicular somatic cells as well as oocyte generate ROS and RNS synchronously and their effects are neutralized by intricate array of antioxidants. ROS such as hydrogen peroxide (H(2)O(2)) and RNS such as nitric oxide (NO) act as signaling molecules and modulate various aspects of oocyte physiology including meiotic cell cycle arrest and resumption. Generation of intraoocyte H(2)O(2) can induce meiotic resumption from diplotene arrest probably by the activation of adenosine monophosphate (AMP)-activated protein kinase A (PRKA)-or Ca(2+)-mediated pathway. However, reduced intraoocyte NO level may inactivate guanylyl cyclase-mediated pathway that results in the reduced production of cyclic 3',5'-guanosine monophosphate (cGMP). The reduced level of cGMP results in the activation of cyclic 3',5'-adenosine monophosphate (cAMP)-phosphodiesterase 3A (PDE3A), which hydrolyses cAMP. The reduced intraoocyte cAMP results in the activation of maturation promoting factor (MPF) that finally induces meiotic resumption. Thus, a transient increase of intraoocyte H(2)O(2) level and decrease of NO level may signal meiotic resumption from diplotene arrest in mammalian oocytes.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
30
|
Tripathi A, Kumar KVP, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol 2010; 223:592-600. [PMID: 20232297 DOI: 10.1002/jcp.22108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Meiotic cell cycle in mammalian oocytes is a dynamic process that involves several stop/go channels. The cell cycle arrest in oocyte occurs at various stages such as diplotene, metaphase-I (M-I), metaphase-II (M-II), and so called metaphase-like arrest (M-III). Leutinizing hormone surge induces meiotic resumption from diplotene arrest in follicular microenvironment by overriding several factors responsible for the maintenance of meiotic arrest. The inhibitory factors are synthesized in oocyte or in the associated follicular somatic cells and transferred to the oocyte. The major factors include hypoxanthine, cyclic adenosine 3', 5'-monophosphate, cyclic guanosine 3', 5'-monophosphate, reactive oxygen species, protein kinase A, and protein kinase C. In the presence of active protein kinases, epidermal-like growth factors are produced that activate mitogen-activated protein kinase in cumulus granulosa cells. The maturation promoting factor, cytostatic factors, and spindle assembly checkpoint proteins are also involved in that maintenance of arrest at various stages of meiotic cell cycle in mammalian oocytes. In this review, we briefly summarize the role of these factors in the maintenance of meiotic cell cycle arrest in mammalian oocytes.
Collapse
Affiliation(s)
- Anima Tripathi
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
31
|
Tripathi A, Khatun S, Pandey A, Mishra S, Chaube R, Shrivastav T, Chaube S. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic Res 2009; 43:287-94. [DOI: 10.1080/10715760802695985] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|