1
|
Arya DM, Gupta S, Kapatia G, Kumari N. Commentary on 'Development and validation of a minimally invasive protocol for assessing oxidative stress markers in exfoliated oral cells'. Cytopathology 2024; 35:792-793. [PMID: 39091242 DOI: 10.1111/cyt.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The assessment of reactive oxygen species (ROS) offers immense prospects for the diagnosis of chronic diseases. A protocol to assess redox imbalance in exfoliated cells can prove beneficial in our understanding of the role of ROS in the diagnosis of these diseases. Further studies on the development of such protocols are needed.
Collapse
Affiliation(s)
| | - Shruti Gupta
- Department of Pathology and Lab Medicine, All Institute of Medical Sciences, Raebareli, India
| | - Gargi Kapatia
- Department of Pathology and Lab Medicine, All Institute of Medical Sciences, Bhatinda, India
| | - Niraj Kumari
- Department of Pathology and Lab Medicine, All Institute of Medical Sciences, Raebareli, India
| |
Collapse
|
2
|
Hasan A, Devi Ms S, Sharma G, Narayanan V, Sathiyarajeswaran P, Vinayak S, Sunil S. Vathasura Kudineer, an Andrographis based polyherbal formulation exhibits immunomodulation and inhibits chikungunya virus (CHIKV) under invitro conditions. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115762. [PMID: 36181982 DOI: 10.1016/j.jep.2022.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chikungunya disease (CHIKD) is caused by the alphavirus, chikungunya virus (CHIKV) and is characterized by acute fever and joint inflammation; the inflammation continues even after clearance of the virus from the system, persisting for several months to years. Currently, there are no modern medicines/vaccines available for its treatment and use of over-the-counter anti-inflammatory generic medicines to relieve symptoms is generally practiced. In India, Indian traditional medicines hold a lot of promise to treat this infection and are routinely used during outbreaks. AIM OF THE STUDY In the present study, we characterized the phytochemical and physicochemical properties of aqueous and ethanol extracts of the Vathasura Kudineer (VSK), a Andrographis based Siddha polyherbal formulation. Additionally, we evaluated its immunomodulatory and antiviral potential using an in vitro system. MATERIALS AND METHODS Aqueous and ethanolic extracts of VSK were prepared and their physico and phytochemical properties were obtained by biochemical and biophysical assays, HPTLC and FTIR. The aqueous extracts of VSK and several of its ingredients were evaluated for their cytotoxicity in Vero cells and using the maximum non-toxic concentration (MNTC), were processed further for evaluating their ability to inhibit CHIKV infection in Vero cells. We performed the co-treatment assay with ethanol extract of VSK and several of its ingredients to assess the antiviral activity against chikungunya virus on Vero cells and through pre-treatment assay (anti-adhesive effect), co-incubation assay (virucidal effect) and post-treatment assay (post-entry effect) were evaluated. Further, we tested the aqueous extract of VSK along with some of its ingredients for their immunomodulatory properties. We performed antioxidant and anti-inflammatory assays using LPS-simulated RAW 264.7 cells. For antioxidant capacity of extracts, we performed extra-cellular ABTS radical scavenging activity and intra-cellular effects on ROS generation and SOD activity. We assessed the effect on most important inflammatory mediators like Nitric oxide (NO) and Prostaglandin E2 (PGE2) and pro-inflammatory cytokines like interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNFα). RESULTS We provided the fingerprint of the phytochemicals of both ethanol and aqueous extracts of VSK that can be used for identification. We observed that ethanol extract was able to inhibit CHIKV infection at MNTC with 48 h of treatment on Vero cells. Its ingredient VSKI-As (Anethum sowa) found to be most effective to show virucidal effect while VSKI-Cs (Clerodendrum serratum) and VSKI-Pn (Pipper nigrum) found to be effective in post-entry effect. VSK was able to show ABTS radical scavenging activity, reduce ROS generation, inhibit the inflammatory mediators (NO and PGE2) and pro-inflammatory cytokines (IL-1β and TNFα) production in LPS-stimulated RAW 264.7 cells. CONCLUSIONS We provided the evidence that VSK has both immunomodulatory as well as antiviral potential. It shows virucidal as well as post-entry effects on chikungunya virus. VSK can inhibit pro-inflammatory cytokines, IL-1β and TNFα production by suppressing the inflammatory mediators, NO and PGE2.
Collapse
Affiliation(s)
- Abdul Hasan
- Vector Borne Disease Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shree Devi Ms
- Siddha Central Research Institute, Chennai, Tamil Nadu, India
| | - Geetika Sharma
- Vector Borne Disease Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vimal Narayanan
- Vector Borne Disease Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - S Vinayak
- Siddha Central Research Institute, Chennai, Tamil Nadu, India
| | - Sujatha Sunil
- Vector Borne Disease Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
3
|
Gupta S, Mishra KP, Gupta R, Singh SB. Andrographolide - A prospective remedy for chikungunya fever and viral arthritis. Int Immunopharmacol 2021; 99:108045. [PMID: 34435582 DOI: 10.1016/j.intimp.2021.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/14/2022]
Abstract
AIM Andrographolide, the major bioactive compound of the plant Andrographis paniculata, exerts anti-inflammatory, cyto-, neuro- and hepato-protective effects. Traditional remedies for infectious diseases include A. paniculata for maladies like fever, pain, rashes which are associated with chikungunya and other arboviral diseases. Since andrographolide and A. paniculata have potent antiviral properties, the present review aims to provide a comprehensive report of symptoms and immunological molecules involved in chikungunya virus (CHIKV) infection and the therapeutic role of andrographolide in the mitigation of chikungunya and associated symptoms. MATERIALS AND METHODS Studies on the therapeutic role of A. paniculata and andrographolide in chikungunya and other viral infections published between 1991 and 2021 were searched on various databases. RESULTS AND DISCUSSION The havoc created by chikungunya is due to the associated debilitating symptoms including arthralgia and myalgia which sometimes remains for years. The authors reviewed and summarized the various symptoms and immunological molecules related to CHIKV replication and associated inflammation, oxidative and unfolded protein stress, apoptosis and arthritis. Additionally, the authors suggested andrographolide as a remedy for chikungunya and other arboviral infections by highlighting its role in the regulation of molecules involved in unfolded protein response pathway, immunomodulation, inflammation, virus multiplication, oxidative stress, apoptosis and arthritis. CONCLUSION The present review demonstrated the major complications associated with chikungunya and the role of andrographolide in alleviating the chikungunya associated symptoms to encourage further investigations using this promising compound towards early development of an anti-CHIKV drug. Chemical Compound studied: andrographolide (PubChem CID: 5318517).
Collapse
Affiliation(s)
- Swati Gupta
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi 110029, India.
| | - K P Mishra
- Defence Research and Development Organization (DRDO)-HQ, Rajaji Marg, New Delhi 110011, India
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - S B Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
4
|
Alves-Leon SV, Ferreira CDS, Herlinger AL, Fontes-Dantas FL, Rueda-Lopes FC, Francisco RDS, Gonçalves JPDC, de Araújo AD, Rêgo CCDS, Higa LM, Gerber AL, Guimarães APDC, de Menezes MT, de Paula Tôrres MC, Maia RA, Nogueira BMG, França LC, da Silva MM, Naurath C, Correia ASDS, Vasconcelos CCF, Tanuri A, Ferreira OC, Cardoso CC, Aguiar RS, de Vasconcelos ATR. Exome-Wide Search for Genes Associated With Central Nervous System Inflammatory Demyelinating Diseases Following CHIKV Infection: The Tip of the Iceberg. Front Genet 2021; 12:639364. [PMID: 33815474 PMCID: PMC8010313 DOI: 10.3389/fgene.2021.639364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emergent arbovirus that causes a disease characterized primarily by fever, rash and severe persistent polyarthralgia, although <1% of cases develop severe neurological manifestations such as inflammatory demyelinating diseases (IDD) of the central nervous system (CNS) like acute disseminated encephalomyelitis (ADEM) and extensive transverse myelitis. Genetic factors associated with host response and disease severity are still poorly understood. In this study, we performed whole-exome sequencing (WES) to identify HLA alleles, genes and cellular pathways associated with CNS IDD clinical phenotype outcomes following CHIKV infection. The cohort includes 345 patients of which 160 were confirmed for CHIKV. Six cases presented neurological manifestation mimetizing CNS IDD. WES data analysis was performed for 12 patients, including the CNS IDD cases and 6 CHIKV patients without any neurological manifestation. We identified 29 candidate genes harboring rare, pathogenic, or probably pathogenic variants in all exomes analyzed. HLA alleles were also determined and patients who developed CNS IDD shared a common signature with diseases such as Multiple sclerosis (MS) and Neuromyelitis Optica Spectrum Disorders (NMOSD). When these genes were included in Gene Ontology analyses, pathways associated with CNS IDD syndromes were retrieved, suggesting that CHIKV-induced CNS outcomesmay share a genetic background with other neurological disorders. To our knowledge, this study was the first genome-wide investigation of genetic risk factors for CNS phenotypes in CHIKV infection. Our data suggest that HLA-DRB1 alleles associated with demyelinating diseases may also confer risk of CNS IDD outcomes in patients with CHIKV infection.
Collapse
Affiliation(s)
- Soniza Vieira Alves-Leon
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | - João Paulo da Costa Gonçalves
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Dutra de Araújo
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia Cecília da Silva Rêgo
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Mendonça Higa
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Richard Araújo Maia
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Laise Carolina França
- Translational Neuroscience Laboratory, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil
| | - Marcos Martins da Silva
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christian Naurath
- Federal Hospital Cardoso Fontes, Ministry of Health, Rio de Janeiro, Brazil
| | | | | | - Amilcar Tanuri
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando Costa Ferreira
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Renato Santana Aguiar
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
5
|
Ferreira AS, Baldoni NR, Cardoso CS, Oliveira CDL. Biomarkers of severity and chronification in chikungunya fever: a systematic review and meta-analysis. Rev Inst Med Trop Sao Paulo 2021; 63:e16. [PMID: 33656139 PMCID: PMC7924982 DOI: 10.1590/s1678-9946202163016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Currently, there are no biomarkers for Chikungunya fever (CHIK) in clinical practice that can accurately predict the severity or chronification of the disease. The aim of this study is to evaluate the existing literature on biomarkers related to the severity and chronification of CHIK. In this sense, a systematic review was conducted based on the PRISMA Statement guideline. Articles that described the association of biomarkers with the evolution of the disease (severity or chronification), published until August 20th 2019 were considered eligible. The search was carried out in the PubMed, Scopus, Virtual Health Library (VHL) and Science Direct databases. After searching the databases, 17 articles were added to the review, and after analyzing the articles, several biomarkers were associated with severity, such as increased levels of IL-6, IP-10, IL-1b, MIG, MCP-1, and reduced levels of RANTES and IL-8 or chronification, such as increased levels of IL-6, TNF-α, MCP-1, IL-12, INF-α, IL-13, INF-γ, GM-CSF, CRP, IL-1a, IL-15, Factor VII, IP-10, IL-10, IL-4, IL-1RA, IL-8, MIP-1α, MIP-1β, ferritin, MIG, ESR, NO, malondialdehyde, and reduced levels of RANTES, ferritin, eotaxin, HGF, IL-27, IL-17A, IL-29, TGF-β, IL-10, and thiols. IL-6, CRP and TNF-α were included in the meta-analysis to assess the relationship with chronification, although they did not reach statistical significance. It was concluded that several biomarkers showed a relationship with severity and chronification of CHIK; the search for these biomarkers can reveal prognostic factors and important therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Andreia Silva Ferreira
- Universidade Federal de São João Del-Rei, Campus Centro-Oeste Dona
Lindu, Divinópolis, Minas Gerais, Brazil
| | - Nayara Ragi Baldoni
- Universidade Federal de São João Del-Rei, Campus Centro-Oeste Dona
Lindu, Divinópolis, Minas Gerais, Brazil
- Universidade de Itaúna, Itaúna, Minas Gerais, Brazil
| | - Clareci Silva Cardoso
- Universidade Federal de São João Del-Rei, Campus Centro-Oeste Dona
Lindu, Divinópolis, Minas Gerais, Brazil
| | | |
Collapse
|
6
|
Tripathi PK, Singh J, Gaurav N, Garg DK, Patel AK. In-silico and biophysical investigation of biomolecular interaction between naringin and nsP2 of the chikungunya virus. Int J Biol Macromol 2020; 160:1061-1066. [PMID: 32464207 DOI: 10.1016/j.ijbiomac.2020.05.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Chikungunya virus; the pathogen for chikungunya febrile and arthritic disease, having 11.8 kb positive-sense RNA genome encodes polyproteins for structural and non-structural regions. The polyprotein (P1234) corresponding to the non-structural part from 5' end gets auto-cleaved by the action of nsP2 protease, which leads to the generation of individual functional enzymatic proteins like nsP4, nsP1, nsP2 and nsP3. Thus, nsP2 protein initiates viral replication. Targeting nsP2 to block virus replication has always been the foremost strategy to develop antivirals. Plant-based molecules are one of the top choices to develop as inhibitor due to their less toxicity and wide availability. Using a combination of receptor-based docking and MD simulations, we identified a flavanone glycoside- naringin, which binds to nsP2 protease at nM affinity. The biomolecular interaction between naringin and nsP2 was established through SPR. As discerned through FTIR and intrinsic fluorescence studies, upon binding with naringin, a global structural change in nsP2 occurs. This structural modulation in nsP2 due to binding of naringin is likely to interfere with the normal functioning of this enzyme during the viral life cycle. In conclusion, this report highlights the potential of naringin as an anti-viral agent against Chikungunya.
Collapse
Affiliation(s)
- Praveen Kumar Tripathi
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jasdeep Singh
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi 110062, India
| | - Nitika Gaurav
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dushyant K Garg
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110069, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
7
|
Sardaro N, Della Vella F, Incalza MA, DI Stasio D, Lucchese A, Contaldo M, Laudadio C, Petruzzi M. Oxidative Stress and Oral Mucosal Diseases: An Overview. In Vivo 2019; 33:289-296. [PMID: 30804105 PMCID: PMC6506298 DOI: 10.21873/invivo.11474] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) and free radicals are physiologically produced during cellular metabolism. When their balance is disrupted in favor of ROS, a condition called oxidative stress occurs. Oxidative stress represents a widespread phenomenon involved in several pathological conditions. The aim of the present review was to report current knowledge on oxidative stress related to oral mucosal diseases. MATERIALS AND METHODS Articles from 2000 to 2018 were selected for relevance, validity and quality, from results obtained in PubMed, MEDLINE and Google Scholar using the following search terms: oxidative stress and oral lichen, oral pemphigus, aphthous stomatitis, oral leukoplakia, oral cancer, oral squamous cell carcinoma and oral carcinoma. All articles were independently screened for eligibility by the authors. RESULTS This narrative review integrates extensive information from all relevant published studies focusing on oxidative stress in oral mucosal diseases. We outline the pathogenetic function of oxidative stress in the most frequent inflammatory, potentially malignant and malignant diseases of the oral mucosa and provide detailed findings from human research. CONCLUSION Although variability in findings between individual studies exists, it justifies the conclusion that oxidative stress is a significant process in the oral mucosal diseases pathogenesis.
Collapse
Affiliation(s)
- Nicola Sardaro
- Section of Biochemistry, Department of Basic Medical Science, Neuroscience and Organs of Sense, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Fedora Della Vella
- Section of Dentistry, Interdisciplinary Department of Medicine, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Maria Angela Incalza
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Dario DI Stasio
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Alberta Lucchese
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Claudia Laudadio
- Section of Dentistry, Interdisciplinary Department of Medicine, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Massimo Petruzzi
- Section of Dentistry, Interdisciplinary Department of Medicine, School of Medicine, Aldo Moro University of Bari, Bari, Italy
| |
Collapse
|